
3

Page 1

8.11.61

3 The Instruction Repertory

In this Section are given detailed descriptions of the
various functions in the Orion instruction repertory. Each
description is given in a precise symbolic form and also
verbally.

Exceptions and special cases are given and brief
examples of the uses of some instructions.

When discussing some of the simpler groups of
functions, a general introduction to the group is given,
followed by a short description of the individual functions
within that group. The more complex instructions are
described individually in detail.

It is assumed that the reader is familiar with the
differences between the 2-address and 3-address types and with
the modification and replacement facilities.

In these descriptions the X- and Y-addresses are the
effective addresses at the time the instruction is obeyed,
after all replacements and/or modifications have been done,
including possibly pre-modification by one or more 116 and/or
117 instructions.

Timing of Orion Programs

Orion 1, like other machines of its generation, does
not have fixed instruction times as do simple serial machines.
The following are some of the more important factors which
introduce variations into instruction times.

1) Carries

Orion has a parallel adder with a carry detection
circuit and any micro-program operation which refers to
the result of an addition or subtraction may be subject
to a delay whilst waiting for this carry to die down.
This applies particularly to the carries generated in a
modification and the carry produced as a result of
arithmetic orders although in this latter case, due to
the carry-speed circuits and the fact that the next
instruction is read before the result is written away,
the maximum delay is 8 microsecs.

2) Address Checking

The address-checking circuits on Orion, for both
lock-outs and reservations, operate in a synchronous
serial manner. Reading from the core store can take
place without waiting for the address checking to be
completed, but at the end of each instruction that
jumps or performs a write there may be a delay for this
checking to be completed. The core store operates in 12
microsecs. and an address can be checked in 16
microsecs so

3

Page 2

8.11.61

that instructions which do 4 operations on three
addresses, such as the two address 00 instruction, can
operate in 48 microsecs although this depends on
starting the instruction at the correct phasing with
respect to the address checking. If an address which
is being checked for lock-outs agrees with one of the
lock-out addresses in the most significant 7 bits of
the address (this address having been left justified
through n places when the store has 215-n words) then
the lock-out checking will take an extra l6 microsecs
even though the word may not be locked out.

3) Hesitations

When a peripheral transfer is initiated the number
of words or characters called for is added into the
program timer although when reading magnetic tape or
using modes 1 or 21 on paper tape there may be less
actual hesitations. When a program is running at the
same time as a peripheral device the peripheral device
control unit has priority over the central machine in
use of the core store and whenever the peripheral uses
a core store cycle the timer does not get augmented;
this happens whether or not the computer required
access to the store at that time. The occurrence of
hesitations prevents the computer from making effective
use of the 12 microsec core store cycle, on the other
hand if a hesitation occurs at the time a jump
instruction is about to jump, the jump can actually
take place quicker than it otherwise would.

The time taken to obey a section of program on Orion is
not directly the sum of the times for the individual
instructions since each instruction time is a function of the
conditions at entry and so depends on the preceding
instructions in the program. None-the-less it is hoped that
the figures given below are useful averages when due notice is
taken of the effects described above. While efforts have been
made to ensure accuracy, the times required by instructions
may, in the end, be different for technical reasons from those
given here.

3

Page 3

 1.5.65

3.A Instruction Times for Orion 1

This section gives the average time taken to obey instructions. For
those which involve an arithmetical process (this includes
comparisons made for jumps and table searching etc.) the time may be
faster or slower than that stated, depending on the carries
involved, i.e. on the operands. The timing for the floating-point
instructions depends to a great extent on the operands.

3.A.1 Orion 1 Instruction Times (Times in micro seconds)

Replacement of an address takes 16 microseconds.

 3-address 2-address 2-add unmodified
Group 0 80 80 64
(03 and 04) 64 80 64

Group 1 64 64 48
(13 and 14) 48 64 48

Group 2 As for Group 0

Group 3

30,31 208 208 192
32 240 240 224
33 272 288 272
34 80+F 80+F 64+F

where 




 −
+




 +
=

8

2
32

8

1
16

nn
F where n is the number of significant bits

in Y.

Group 4 (average times for 4 runs)

40 765 773 755
41 700 718 686
42 1725 1737 1728
43 588 598 571
44 620 626 608
45 621 631 610

Group 5

n is the number of places shifted.

50 to 53

n<24 64+4n 64+4n 48+4n

n≥24 64+4(n-24) 64+4(n-24) 48+4(n-24)

54 to 57

n<48 128+4n 140+4n 112+4n
n>48 128+4(n-48) 140+4(n-48) 112+4(n-48)

54 for n=48 129+192 140+192 112+192
55-57 for n=48 As for n>48

For 54 and 55 if x*<0 then partial justification takes 16
microseconds.

3

Page 4

1.5.65

 3-address 2-address 2-add unmodified
Group 6
 Jump, No Jump Jump, No Jump Jump, No Jump
60 to 62 120, 80 96, 64 64, 32
63 and 64 112, 80 96, 64 64, 32
65 120, 64 96, 64 64, 32
66 120, 64 96, 64 72, 32
67 104, 80 96, 64 72, 32

Group 7

 Jump, No Jump Jump, No Jump Jump, No Jump
70 to 73 96, 64 80, 48 64, 32
74 80, 64 --, 48 --, 32
75 96, 48 80, -- 64, --
76 and 77 96, 48 80, 48 64, 32

Group 8
 Jump, No Jump Jump, No Jump Jump, No Jump
80 128, 64 144, 80 128, 64
81 80, 112 96, 128 80, 112
82 112, 80 128, 96 112, 80
83 96, 96 120, 112 96, 96
84 96, 166 128, 192 96, 166
85 176, 80 208, 112 176, 80
86 64 80 64
87 72 96 64

Group 9
90 160 170 153
91 176 186 169
92 160 168 152
93 134 144 120
94 272 287 256
95 400 416 397

Group 10
100 560 560 528
101 1203 1251 1203
102 129+4n 129+4n 113+4n
 where n = no. of shifts to standardise
103 98+4n 98+4n 82+4n
 n=m or m-24, m is no. of places shifted
104 400 400 384

Group 11
110 and 112 96 80 64
111 88 80 64
114 112 112 96
115 80 92 64
116 28 32 28
117 32 32 32

3

Page 5

1.5.65

Group 12

120

 Y ≥ 0, n = Y 68+4n 76+4n 48+4n
 Y < 0, n = 3-Y

121

 0 ≤ Y ≤ 23, n = Y
 24 ≤ Y ≤ 255, n = Y-24 64+4n 64+4n 48+4n

 -23 ≤ Y ≤ -1, n = 3-Y
-255 ≤ Y ≤ -24, n = -21-Y

122 80 96 112

123 144+24E 172+24E 176

where E=8-n for n≠0 and E=0 for n=0, n being the number
of characters to be changed.

124 96+4n 76+4n 48+4n

where n is the no. of places shifted. If Y<0 add 12
microsecs

125 224+4m

where m is the no. of shifts needed to standardise.

126 113 124 101

Group 14

142 112+20Y 128+20Y 112+20Y

143 96+30n 96+34n 96+30n

n is the number of words

144,145,146 112+20n illegal illegal

3

Page 6

Date 6.9.65

3.A.2 Orion 2 Instruction Times

Times in microseconds

Replacement of an address takes 2.5 microseconds.
Modification of an address takes 3.5 microseconds.
Modification of two addresses takes 4.5 microseconds.

 * An asterisk indicates a typical value.

3-address and 2-address unmodified

Group 0

00, 01, 02, 05, 07 12
03 10
04 8.5
06 11

Group 1

10, 12, 15 10
11 11
13 8.5
14 6.5
16 8.5
17 10.5

Group 2

20, 21, 22, 25, 27 10.5
23 9.5
24 8.5
26 10

Add 1 microsecond for an odd pseudo-register.

Group 3

30 41.5
31 38
32 42
33 50
34 40.5

3
Page 7

Date 6.9.65
Group 4
40 152
41 150
42 294
43 150
44 153
45 153

Group 5

L = left shift R = right shift

where L and R are directions of shift performed by the
computer.

n = shift number

[x] = integral part of x.
 Add 1 microsecond if shift number is negative.

δ(x) = 1, x ≠ 0; δ(x) = 0, x = 0.

50, 51 L 11 + n

50, 51 R 11 + 




 −
2

1n
 + (n-1)mod 2 + δ(n)

52,53 L 11 + 2 





8

n
 + 





2

8modn
 + n mod 2

52, 53 R 11 + 





8

n
 + 





2

8modn
 + n mod 2

↑ 54, 55 L 19.5 + 2n

↑ 54,55 R 19.5 + 




 −
2

1n
 + 2((n-1)mod 2) + 2 δ(n)

56, 57 L 18.5 + 4 





8

n
 + 2 





2

8modn
 + 2(n mod 2)

56, 57 R 18.5 + 2 





8

n
 + 





2

8modn
 + 2(n mod 2)

↑ Add 1.6 microseconds for a partial justification.

 3-address 2-address
unmodified

Group 6

 60 to 65 10.5 8.5

≠67, 67 10.5 8.5

 ≠ Add 1 microsecond for an odd pseudo-register.

3
Page 8

Date 6.9.65

 3-address 2-address unmodified
Group 7

70 to 75 8.5 6
76, 77 10.5 6

 3-address or 2-address unmodified
Group 8

80 to 83 11

84 Successful jump)
85 Unsuccessful jump)

10.5 + 2.8 ((n+1)mod 8)

84 Unsuccessful jump)
85 Successful jump)

30

86 7.0
87 7.5

Group 9

90, 91 24 + n + 1.6m
92 25 + n + 1.6m
93 16.5 + 1.6m

*94 54
*95 160
 97 26 + n + 1.6m

n is the difference in exponents
m is the number of places of shifting needed for
restandardisation
For 90, 91, 92, 93, and 97, add 1 microsecond if ye > xe.

Group 10

*100 130
*101 140
*102 380
*103 288
*104 50

 3-address 2-address unmodified

Group 11

110 15 12

111, 112 ≠ 14 10.5
114 15 15
115 12.5 12.5
116, 117 8.5 8.5

 ≠ Add 1 microsecond for an odd pseudo-register.

3

Page 9

Date 6.9.65

Group 12

120 13.5 + 1.6n + m 13.5 + 1.6n + m

n is the number of places shifted. m is the number of 1’s

121 11 + 





8

n
+ 





2

8modn
 + n mod 2 Same as 3-address

 n is the number of places shifted.

122 10.5 + m 13 + m

 m is the number of characters shifted.

123 21 + 2m (m≠0); 14.5 (m=0) 23.5+2m(m≠0); 16.5(m=0)

 m is the number of characters unchanged.

124 16 + 2.6n 12.5 + 2.6n

 Add 1 microsecond if a 1 is found.
 Add 1 microsecond of Y < 0

 n is the number of places shifted.

125 217 + 70m 217 + 70m

 m is the number of places shifting needed for
restandardisation.

*126 220 220

Group 14

142 pair 36.5 + 6.1n 36.5 + 6.1n
143 17.5 + 2.9n 17.5 + 2.9n
144, 145 13.5 + 4.9n illegal
146 16 + 7.5n illegal

3.0

Page 1

8.11.61

3.0 Group 0

The instructions in this group perform the stated
arithmetical or logical operations involving y, the 48-bit
word in register Y and (except for the 03 and 04 functions) x,
the 48-bit word in register X. The result is written into
accumulator Z in 3-address type or register X in 2-address
type (modified or unmodified).

Function number 00 [0000 000]

(3) z’ = x + y (2) x’ = x + y

Add x to y, writing the result to Z or X. OVR is set
if the result is out of range: this cannot happen if x and y
are of opposite signs.

Function number 01 [0000 001]

(3) z’ = x – y (2) x’ = x - y

Subtract y from x, writing the result into Z or X. OVR
is set if the result is out of range: this cannot happen if x

and y are of the same sign. OVR will be set if x ≥ 0 and yF =
-1.0.

Function number 02 [0000 010]

(3) z' = y - x (2) x’ = y - x

Subtract x from y, writing the result into Z or X. OVR
is set if the result is out of range: this cannot happen if x

and y are of the same sign. OVR will be set if y ≥ 0 and xF =
-1.0.

The result of this instruction is equal in magnitude
and opposite in sign to that of a 01-instruction with the same
X and Y addresses.

If, in a 3-address 01-instruction, the X- and Y-
addresses have been written in the wrong sequence, the error
is most easily corrected by changing the function number to
02.

Function number 03 [0000 011]

(3) z’ = -y (2) x’ = -y

Negate y into Z or X. OVR is set if and only if yF = -1.0.

3.0
Page 2
8.11.61

In 3-address form the X address is irrelevant and
therefore it is recommended that this form should not be used.

If it is desired to overwrite a number by its own
negative an instruction typified by

03 A100 A100

can be used but it is faster and therefore preferable
to use

12 A100 0

Note that when a 2-address 03-instruction is obeyed, x
is extracted from the store, even though it is not used.
When a 3-address 03-instruction is obeyed the X-address is not
checked for lock-outs or for violation of reservations unless
replaced (see 2.2.23 and 2.2.24).

Function number 04 [0000 100]

(3) z’ = y (2) x’ = y

Copy y into Z or X. OVR cannot be set by this
instruction.

It is not necessary to regard y as a number.

In 3-address form X is irrelevant and therefore it is
recommended that this form should not be used.

Note that when a 2-address 04-instruction is obeyed, x
is extracted from the store, even though it is not used. When
a 3-address 04-instruction is obeyed the X-address is not
checked for lock-outs or for violation of reservations unless
replaced. (See 2.2.23 and 2.2.24).

Function number 05 [0000 101]

(3) z’ = x & y (2) x’ = x & y

Perform the logical operation ‘and’ between x and y,
writing the result into Z or X. OVR cannot be set by this
instruction.

For a fuller discussion of the logical operations see
Section 3.2.1.

Function number 06 [0000 110]

(3) z’ = x ∨ y (2) x’ = x ∨ y

Perform the logical operation 'or' between x and y,
writing the result into Z or X. OVR cannot be set by this
instruction.

For a fuller discussion of the logical operations see
Section 3.2.1.

3.0

Page 3

8.11.61

Function number 07 [000 111]

(3) z’ = x ≢ y (2) x’ = x ≢ y

Perform the logical operation 'not equivalent' between
x and y writing the result into 2 or X. OVR cannot be set by
this instruction.

For a fuller discussion of the logical operations see
Section 3.2.1.

3.1
Page 1
8.11.61

3.1 Group 1

The instructions of this group, except 13 and 14,
perform some arithmetical or logical operation between two
operands, one of which is the 48-bit word x (a signed number
in functions 10, 11 and 12, and a logical quantity in
functions 15, 16 and 17). The other operand is the 15-bit
representation of Y itself: in fact, by modification and/or
replacement, Y may be a 24-bit quantity. The functions 13
and 14 use only the operand Y. In 3-address form the result
is written into accumulator Z and in 2-address form it is
written into register X.

The operand Y can be regarded as a 48-bit word in which
the m.s. 33 or 24 bits are all 0's and the l.s. 15 or 24 bits
are the binary representation of Y.

If Y is written as a Basic or a Symbolic Address, the
Y-operand is the corresponding 15-bit machine address.

Y is essentially unsigned in the instructions of group
1. For convenience in writing and punching programs it can be
written as a negative integer. It is then stored and used as
the 15-bit representation of this negative integer. Thus if Y
is written as -10 it is stored and used as the 15-bit
representation of -10 with the effective value of 32768-10 =
32758. If a Y-operand is written as a negative integer and is
then modified, the effective Y is the 24-bit sum of the 24-bit
modifier and the 15-bit unsigned representation of the written
Y- operand.

Function number 10 [0001 000]

(3) z’= x + Y (2) x’ = x + Y

Add Y to x, writing the result into Z or X. OVR is set
if the result is out of range.

A few examples follow:

(a) 10 A100 27 A3

sets (A3)I
’ = (A100)I + 27 or, equally, (A3)F

’ = (A100)F +(27 x
2-47)

(b) 10 A100 (A200) A3

sets (A3)’ = (A100) + A200m, i.e. the 24-bit unsigned modifier
in A200 is added to the signed 48-bit number in A100. Note
that this is not the same as

 00 A100 A200 A3

in which the two signed 48-bit numbers (A100) and (A200) are
added together.

3.1

Page 2

8.11.61

(c) 10 A100 A200 A3

forms the sum of the signed 48-bit number in A100 and the
machine address represented by the Basic Address A200. (The
Y-address can alternatively be written as a Symbolic Address).

(d) 10 A100 0

does not change the content of any register. Such an
instruction can be useful if it is desired to hold up a
program until e.g. a peripheral transfer (ending at A100 in
this case) has been completed satisfactorily.

(e) 10Y A100 (A200) A7

sets (A100)’ = (A100) + A200m + A7m, i.e. it forms the sum of
three numbers by a single instruction, saving one instruction
and about 20 microsecs. over the pair of 00-instructions which
constitute an alternative method. It is, of course, necessary
that A200m and A7m are unsigned (non-negative) 24-bit numbers.

Function number 11 [0001 001]

(3) z’ = x – Y (2) x’ = x - Y

Subtract Y from x, writing the result into Z or X.
OVR is set if the result is out of range.

The examples given for the 10-instruction are equally
valid for the 11-instruction with the appropriate alterations
to allow for the fact that Y is now subtracted.

Function number 12 [0001 010]

(3) z’ = Y – x (2) x’ = Y - x

From Y subtract x, writing the result into Z or X. OVR
is set if the result is out of range.

A special case of a 2-address 12-instruction is, typically

 12 A100 0 (A100)’ = 0 - (A100) = -(A100)

which is the fastest way to overwrite a number by its own
negative. This particular instruction will set OVR if xF = -
1.0.

Function number 13 [0001 011]

(3) z’ = -Y (2) x’ = -Y

Negate Y, writing the result into Z or X. OVR cannot
be set by this instruction.

In 3-address form X is irrelevant and therefore it is
recommended that this instruction should be used in 2-address
form only.

3.1

Page 3

8.11.61

In 2-address type, x is read from the store but is not
used. In 3-address type X is not checked for lockouts or
violation of reservations unless replaced (see 2.2.23 and
2.2.24)

Function number 14 [0001 100]

(3) z’ = Y (2) x’ = Y

Copy Y into Z or X. OVR cannot be set by this
instruction.

In 3-address form X is irrelevant and therefore it is
recommended that this instruction should be used in 2-address
form only. In 2-address type, x is read but not used. In 3-
address type X is not checked for lockouts or violation of
reservations unless replaced (see 2.2.23 and 2.2.24).

Some examples follow

(a) 14 A100 27

set the integer +27 or the fraction 27 x 2-47 in A100.

(b) 14 A100 A200

sets, in A100, the machine address corresponding to Basic
Address A200. (If Y = A0, then this instruction sets xm =
datum point). Note that Y can also be written as a Symbolic
Address.

(c) l4 A100 (A200)

copies A200m into A100, leaving Al00u clear.

Function number 15 [0001 101]

(3) z’ = x & Y (2) x’ = x & Y

Perform the logical operation 'and' between x and Y,
writing the result into Z or X. OVR cannot be set by this
instruction.

For a further discussion of the logical operations see
Section 3.2.1.

When using this function it is necessary to compute the
numerical value of the required mask Y.

Function number 16 [0001 110]

(3) z’ = x ∨ Y (2) x’ = x ∨ Y

Perform the logical operation ‘or’ between x and Y,
writing the result into Z or X. OVR cannot be set by this
instruction.

When using this instruction it is usually necessary to
compute the numerical value of the required mask Y.

For a fuller discussion of the logical operations see
Section 3.2.1.

3.1

Page 4

8.11.61

Function number 17 [0001 111]

(3) z’ = x ≢ Y (2) x’ = x ≢ Y

Perform the logical operation 'not equivalent' between
x and Y, writing the result into Z or X. OVR cannot be set by
this instruction.

When using this instruction it is usually necessary to
compute the numerical value of the required mask Y.

For a fuller discussion of the logical operations see
Section 3.2.1.

3.2
Page 1
8.11.61

3.2 Group 2

These instructions perform some arithmetical or logical
operation between the 48-bit content of the pseudo-register
numbered Y and (with the exception of the 23- and 24-
instructions) the 48-bit word x.

With function-numbers 20, 21 and 22 both words are
regarded as signed numbers while with function-numbers 25, 26
and 27 both words are regarded as logical quantities. The
functions numbered 23 and 24 use only the content of the
pseudo-register.

The contents of the pseudo-registers cannot be altered,
with the following exceptions:-

i) Pseudo-registers 4,5,6 and 7 reflect the current
state of the overflow indicator for the program
currently being obeyed; reference to either 4 or 5
causes the overflow indicator to be left clear.

ii) Pseudo-registers 18 and 19 reflect the current
settings of the hand-switches. These may be
altered at will by the operator.

iii) 2 and 3 contain local Civil Time and thus their
contents change with time.

The pseudo-register address is taken modulo 32; if the
result is 20 or greater then the content is taken as 048 if the
address is even, and as 148 if the address is odd.

Generally, an instruction of group 2 is similar to the
corresponding one in group 0 but with pY in place of y.

Function number 20 [0010 000]

(3) z’ = x + pY (2) x’ = x + pY

Form the sum of x and pY, writing the result into Z or
X. OVR is set if the result is out of range.

Function number 21 [0010 001]

(3) z’ = x – pY (2) x’ = x - pY

Subtract pY from x, writing the result into Z or X.
OVR is set if the result is out of range.

Function number 22 [0010 010]

(3) z’ = pY – x (2) x’ = pY - x

Subtract x from pY, writing the result into Z or X.
OVR is set if the result is out of range.

3.2
Page 2
8.11.61

*Function number 23 [0010 011]

(3) z' = -pY (2) x’ = -pY

Negate pY, writing the result into Z or X. OVR is set
if and only if either Y = 10 (p10 = -1.0) or Y= 18 or 19 and
the handswitch settings are such that p18 or pl9 = -1.0.

In 3-address form X is irrelevant and therefore it is
recommended that this instruction should be used in 2-address
form only.

*Function number 24 [0010 100]

(3) z’ = pY (2) x’ = pY

Copy pY into Z or X. OVR cannot be set by this
instruction.

In 3-address form X is irrelevant and therefore it is
recommended that this instruction should be used in 2-address
form only.

Function number 25 [0010 101]

(3) z’ = x & pY (2) x’ = x & pY

Perform the logical operation 'and' between x and pY,
writing the result into Z or X. OVR cannot be set by this
instruction.

For a fuller discussion of the logical operations see
Section 3.2.1.

Function number 26 [0010 110]

(3) z’ = x ∨ pY (2) x’ = x ∨ pY

Perform the logical operation 'or' between x and pY,
writing the result into Z or X. OVR cannot be set by this
instruction.

For a fuller discussion of the logical operations see
Section 3.2.1.

Function number 27 [0010 111]

(3) z’ = x ≢ pY (2) x’ = x ≢ pY

Perform the logical operation 'not equivalent' between
x and pY, writing the result into Z or X. OVR cannot be set
by this instruction.

For a fuller discussion of the logical operations see
Section 3.2.1.

* Functions 23 and 24:
2-address type, x is read but not used.
3-address type, X is not checked for lockouts or
reservation violation unless replaced (see 2.2.23 and
2.2.24)

3.2

Page 3

8.11.61

3.2.1 The Logical Operations.

The logical operations provided by function-numbers 05,
06, 07, 15, 16, 17, 25, 26 and 27 are as follows:-

i) AND (&).

Given two operands a, and b, form the result c = a & b
by placing in the result a 1-bit in those digital positions
where both a and b have 1-bits. All other positions in the
result have zeros. Thus if a and b are 4-bit words, e.g.

 a = 1100
 b = 0110
then the result is c = a & b = 0100

ii) OR (∨).

Given two operands a, and b, form the result c = a ∨ b
by placing in the result a 1-bit in those digital positions
where either a or b or both have a 1-bit, placing zeros in all
other positions.

Thus if a = 1100
and b = 0110

then c = a ∨ b = 1110

iii) NOT EQUIVALENT (≢).

Given two operands a and b, form the result c = a ≢ b
by placing in the result a 1-bit in those digital positions
where the bits in a and b are not the same (i.e. where one has
a 1-bit and the other a 0-bit) and placing zeros in the result
in all other positions.

Thus if a = 1100
and b = 0110

then c = a ≢ b = 1010.

3.3

Page 1

8.11.61

3.3 Group 3

All the legal instructions of group 3 are concerned
with multiplication, the range provided allowing for single-
length, double-length and accumulative double-length products.

Function-numbers 30 to 34 use as one operand the 48-bit
signed number x. Functions 30 to 33 use also the 48-bit
signed number y, while function 33 uses a third operand,
namely the double-length signed number z:.

Function 34 uses, as the second operand, the unsigned
15- or 24-bit number Y instead of y.

The function-numbers 35, 36 and 37 are unassigned and
are treated as illegal.

Function number 30 [0011 000]

(3) zI’ = xIyI (2) xI’ = xIyI

Single-length product of integers. Regarding x and y
as signed integers, form their product, writing the result
into Z or X. OVR is set if the result exceeds single-length
capacity.

In effect the result of this instruction is the l.s.
half of the full double-length product, adjusted to be
correctly signed.

If one (or both) of the operands is non-negative and
can be represented by 24 bits or less it may be faster to use
a 34 instruction (q.v.) with replacement of the Y-address.

Function number 31 [0011 001]

(3) zF’ = (xF.yF)r (2) xF’ = (xF.yF)r

Rounded single-length product of fractions. Regarding
x and y as fractions, form their product, rounded to single-
length, and write the result into Z or X. OVR will be set if
and only if
xF = yF = -1.0.

3.3

Page 2

8.11.1961

When this instruction is obeyed the full double-length
product in standard form is formed. The m.s. half is then
rounded by adding 2-47 to it if the l.s. half is equal to or
exceeds ½ and is then stored as the result. Thus the result
is that integral multiple of 2-47 which is nearest to the true
product of xF and yF and is the algebraically greater if the
true product is an odd multiple of 2-48.

Function number 32 [0011 010]

(3) z:’ = xy (2) x:’ = xy

Double-length product. Form the full double length
product of x and y, writing the result into Z and Z+1 or X and
X+1. The result is in standard form, i.e. with the l.s. half
non-negative. OVR is set if and only if xF = yF = -1.0.

The consequence of the standard form for the d.l.
product are illustrated by the table below.

x y z’ (or x’) z*’ (or
x*’)
+5 +9 +0 +45
+0.5 +9 +4 +0.5
+5 -9 -1 247-45
-0.5 +9 -5 +0.5
+0.5 +0.875 +0.4375 +0
-0.5 +0.875 -0.4375 +0

If x and y are both fractions or both integers then the
result is a double-length fraction or integer respectively.
If one of the operands is a fraction and the other is an
integer then the product is a standard double-length mid-point
number.

3.3

Page 3

28.6.1962

Function number 33 [0011 011]

(3) z:’ = z: + xy (2) x:’ = x: + xy

Accumulative multiplication. Form the full double-
length product of x and y and add it to the double-length
number z: in Z and Z+1 (3-address) or to x: in X and X+1 (2-
address). OVR is set if the result exceeds double-length
capacity.

The result is left in standard form, i.e. with z*’ (or

x*’) ≥ 0 but it is not necessary that z: (or x:) should be in
standard form initially since a ‘partial justify’ operation is
performed on z: (or x:). Overflow caused by the ‘partial
justify’ is dealt with correctly. In the 2-address form any
carry into x caused by the ‘partial justify’ is not considered
in forming the product xy.

It is, of course, essential that the scalings of x, y
and z: (or x:) are compatible. The increment xy and the
result are correctly signed.

Function number 34 [0011 100]

(3) z’ = xY (2) x’ = xY

Multiply x by Y, writing the result into Z or X. Y is
an unsigned 15- or 24-bit number while x is a signed 48-bit
number. The result is correctly signed. OVR is set if the
result exceeds single-length capacity.

This function is closely related to the 30. The result
given is, in effect, the signed l.s. half of the full double-
length product of two 48-bit words, the m.s. 24 or 33 bits of
one of which are all 0’s.

Thus, if the content of A100 is regarded as an integer
i then the instruction

34 A100 27 A7

will set in A7 the integer equal to 27i.

In certain cases the 34 function can be used instead of
the 30. This is so if at least one of the operands is a non-
negative 24-bit number. Suppose that such a number j is in
A200, while in A100 is a signed 48-bit number k. Then the
instruction

34 A100 (A200) A7

3.3

Page 4

 28.6.1962

will set in A7 the signed product jk. This may be faster than
the direct instruction

30 A100 A200 A7

(see notes on timing below).

The function 34, is, of course, designed primarily for
multiplication by program constants, e.g. for multiplying
pounds sterling by 240 to obtain the equivalent number of
pence.

Function number 35 [0011 101]

Function number 36 [0011 110]

Function number 37 [0011 111]

These instructions are illegal.

3.4

Page 1

9.5.62

3.4 Group 4

The legal instructions of group 4 are concerned with
the division process. Function-numbers 46 and 47 are
unassigned and if encountered, will cause entry to the Monitor
Routine, the program being suspended.

The functions numbered 40 to 45 each use two operands.
One of these is the signed 48-bit number y. The other is
either the signed 48-bit number x or the standard double-
length number x:. In all cases x or x: is the dividend
(numerator) and y is the divisor (denominator), i.e. the
instructions divide x or x: by y.

In all cases if y = 0 the Monitor Program will be
entered and the program suspended.

The results occupy either one word or two, depending on
the actual function used. Single word results are written
into Z in 3-address form and into X in 2-address form.
Results which occupy two words are written into Z and Z+1 in
3-address form and into X and X+1 in 2-address form. Nothing
should be assumed about the quotient and remainder of a
division instruction which overflows.

Function Number 40 [0100 000]

(3) zI’ + (z*I’/yI) = xI/yI; 0 ≤ z*I’/yI < 1

(2) As 3-address with xI’ and x*I’ in place of zI’ and z*I’
respectively.

Unrounded division of integers. Divide xI by yI,
writing the unrounded integral quotient into Z and the
remainder into Z+1. The remainder is always of the same sign
as y and numerically less than y. The quotient and remainder,
in 3-address form, satisfy

zI’.yI + z*I’ = xI

OVR is set if x is -247 and y is -1.

The results obtained for selected values of xI and yI
are tabulated below.

 xI yI zI’ z*I’

 +37 +5 +7 +2
 -37 +5 -8 +3
 +37 -5 -8 -3
 -37 -5 +7 -2
 +1 +5 0 +1
 +1 -5 -1 -4

3.4

Page 2

9.5.1962

Note also that:-

i) zI’ = quotient, z*F’ = remainder when xF is divided
yF.

ii) zF’ = unrounded quotient when xF is divided by yI.

Although the remainder is such that it can in turn be
divided by y to give the non-negative l.s. half of a double-
length quotient it is not necessary to do so, since the 42-
instruction gives a result in this form.

Function Number 41 [0100 001]

(3) zI’ = (xI/yI)r or (xF/yF)r; -½ ≤ x/y - zI’ < ½

(2) As 3-address but with xI’ in place of zI’.

Rounded division of integers. Divide x by y, to produce
a rounded integral quotient, writing this into Z or X.

The rounding is such that if the rounded quotient is
subtracted from the true quotient of xI/yI the difference is
numerically less than ½ or equal to -½.**

In fact the rounded quotient is the nearest integer to
x/y and is the algebraically greater if x/y is an odd multiple
of ½.

The results of some selected cases are tabulated below.

 xI yI zI’

 +13 +2 +7
 -13 +2 -6
 +13 -2 -6
 -13 -2 +7
 +37 +5 +7
 -37 +5 -7

OVR is set if x = -247 and y = -1.

** Editors note: This should be “and greater than or equal to
-½”

3.4

Page 3

9.5.62

Function Number 42 [0010 010]

(3) z:M’ = (xI/yI)r or (xF/yF)r; -½ ε ≤ (x/y) - z:M’ < ½ ε

(2) As 3-address but with x:M’ in place of z:M’.

Division with rounded double-length quotient. Divide x
by y to give a mixed-number quotient, writing the signed
integral part into Z or X and the non-negative fractional part
into Z+1 or X+1. OVR is set if

 xI = -2
47 and yI = -1

(or the fractional interpretations of those words).

The results given in some selected cases are tabulated
below.

xI yI zI’ z*F’

+37 +8 +4 +0.625

-37 +8 -5 +0.375

+37 -8 -5 +0.375

-37 -8 +4 +0.625

+1 +8 0 +0.125

+1 -8 -1 +0.875

The quotient is rounded to the nearest multiple of 2-47
and to the algebraically greater if the true value of x/y is
an odd multiple of 2-48.

Note also that:-

i) z:F’ = rounded d.l. quotient when xF is divided by
yI;

ii) z:I’ = rounded d.l. quotient when xI is divided by
yF.

3.4

Page 4

9.5.1962

Function Number 43 [0100 011]

(3) zF’ = (xF/yF)r or (xI/yI)r ; -½ ε ≤ x/y - zF’ < ½ ε

|x| < |y| or x = -y

(2) As 3-address but with xF’ in place of zF’.

Rounded division of x by y producing a fractional
quotient, which is written into Z, or X. The operands must be
such that x is numerically less than y or is equal to -y. OVR
is set if neither of these conditions is satisfied. If x and
y have the same scaling factor (e.g. if both are fractions or
if both are integers) than z’ is a fraction.

The result is the multiple of 2-47 nearest to the true
value of x/y and is the algebraically larger if x/y is an odd
multiple of 2-48.

Note also that zI’ = (xI/yF)r

This instruction can be used, following a 44-
instruction (q.v.), to produce a rounded standard double-
length quotient when x: is divided by y.

Function Number 44 [0100 100]

(3) zI’ + (z*I’/yI) = x:I/yI ; 0 ≤ z*I’/yI < 1

(2) As 3-address but with xI’ and x*I’ in place of zI’ and
z*I’.

Unrounded division with double-length dividend
(numerator).

The standard d.l. number x: is divided by the s.l.
number y producing an integral quotient and a remainder. The
quotient is written into Z or X and the remainder into Z+1 or
X+1. OVR is set if z’ exceeds single-length capacity. If x:
is not in standard form the OMP is entered; the OMP does a
‘partial justify’ and obeys the instruction.

For comments and examples relating to the values of
quotients and remainders please see under function-number 40;
in essence functions 40 and 44 differ only in using single-and
double-length dividends respectively.

3.4

Page 5

9.5.1962

If the remainder from a 44-instruction is divided by
the original divisor (using a 43-instruction) the result is
necessarily a non-negative fraction. Thus if a is a standard
d.l. number in A100 and A101 and if b is an s.l. number in
A200 then after obeying the instructions

44 A100 A200 A7

43 A8 A200

3.4

Page 6

8.11.61

A7 and A8 will together contain the standard d.l. mid-point
(rounded) value of a/b, with the signed integral part in A7
and the non-negative fractional part in A8.

Function number 45 [0100 101]

(3) zF’ = (x:F/yF)r or (x:M/yI)r ; -½ ε ≤ (x:F/yF) - zF’ < ½ ε

(2) As 3-address but with xF’ in place of zF’

Rounded division with double-length dividend. Divide
the standard d.l. number x: by the s.l. number y to produce a
rounded fractional quotient, writing this quotient into Z or
X. The operands must be such that |x:F| < |yF| or x:F = -yF.
OVR is set if neither of these conditions is satisfied. If x:
is not in standard form, the O&MP is entered; the OMP does a
‘partial justify’ and obeys the instruction.

The result is that multiple of 2-47 which is nearest to
the true value of x:F/yF being the algebraically larger if the
true quotient is an odd multiple of 2-48.

Note also that

zI’ = (x:M/yF)r or (x:I/yI)r ; -½ ≤ (x:M/yF) - zI’ < ½

i.e. the quotient may be regarded as the rounded
integral quotient when x:M is divided by yF or when x:I is
divided by yI.

Function number 46 [0100 110]

Function number 47 [0100 111]

Illegal instructions

3.5
Page 1
8.11.61

3.5 Group 5.

The instructions of this group are concerned with
simple shifts. Facilities are provided for shifting single-
and double-length quantities.

In all these instructions the quantity to be shifted is
that in register X if single-length or that in registers X and
X+l if double-length. If the instruction is of 3-address type
the result is written into Z (or Z and Z+1) while in 2-address
type the result is written into X (or X and X+1).

The number of places by which the quantity is shifted
(the ‘shift number’) is Y, which may be a number written in
the instruction or may be obtained by replacement; whichever
alternative is used, the shift number may also be modified
using internal and/or external modification. If Y is written
in the instruction as a negative integer it is treated as
such, i.e. although it is stored as 15 bits, the sign bit is
repeated in the control circuits when the instruction comes to
be obeyed.*

Generally a shift may be ‘up’ or ‘down’. (Alternative
terms are ‘left’ and ‘right’ respectively). If a quantity is
shifted up, each bit is moved through Y digit-positions
towards the more-significant end, while if it is shifted down,
each bit is moved through Y digit-positions towards the less-
significant end. In general, such movement results in some
digit-positions becoming vacant and in some bits being moved
off the end of the word. In double-length shifts some bits
are transferred from one word to the other. The action in
such cases depends on whether the shift is logical or
arithmetical.

(a) Logical, single-length. Those bits which are moved off
the end of the word are lost; those digit positions
vacated at the other end of the word are filled with
zeros. OVR cannot be set.

(b) Logical, double-length. Action at the ends of the d.l.
quantity is as stated under (a) above. Those bits which
pass from one word to the other do so without special
treatment; the effect is as though the two registers
containing the d.l. quantity had been temporarily joined
to form a single 96-bit register. OVR cannot be set.

(c) Arithmetical, single-length.

i) Shift up. Digit positions vacated at the l.s.
end are filled with zeros. OVR is set if the
result exceeds capacity (i.e. if significant
1-bits are shifted off the m.s. end, or if the
sign apparently changes).

ii) Shift down. The result is rounded; if the
last bit shifted off the l.s. end is a 1, a 1-
bit is added to the least-significant end
after the shift before the

* For fuller details of formation of shift-number, see section
3.5, page 3.

3.5

Page 2

8.11.61

result is written away. The sign-bit is
propagated; digit-positions vacated at the m.s.
end are filled with copies of the sign-bit.
These special actions lead to the result being
correctly signed and rounded. OVR cannot be
set by a shift down.

(d) Arithmetical, double-length. The action at the ends of
the d.l. number is as stated in (c) above. In addition
a double-length arithmetical shift includes a ‘partial-
justify’ operation. If the l.s. word of the pair is
negative (i.e its sign-bit is a 1) the d.l. quantity is
adjusted so that the l.s. word is non-negative (its
sign-bit is a 0), the m.s. word being adjusted so that
the value of the double-length quantity is unchanged.
Thereafter the sign-bit of the l.s. word is excluded
from the shifting process. Those bits which pass from
one word to the other effectively ‘skip over’ D0 of the
l.s. word. For example, if a d.l. quantity is shifted
arithmetically up by one place, then D1 of the l.s.
word of the original quantity is shifted to become D47
of the m.s. word of the result, passing over D0 of the
l.s. word. OVR cannot be set by a shift down but will
be set if the result of an upward shift exceeds
capacity. The ‘partial justify’ is still performed
(and may set OVR) if Y=0.

In all instructions of this group, the shift number Y
is treated as signed. Thus if Y is negative, a function-
number which nominally produces a shift up will in fact
produce a shift down and vice-versa.

3.5

Page 3

8.11.61

Shift Number

The shift-number is formed as described below.

i) If Y is not replaced, the 15-bit representation of Y is
extended upwards to 24 bits by repeating the m.s. bit of
Y.

ii) If Y is replaced, it is replaced by ym as usual. (Y may
have been pre-modified (116-instruction) before the
replacement).

iii) If Y is internally modified (2-address modified
instruction), zm is added to the 24-bit result of (i) or
(ii).

iv) If Y is externally modified (ll6- or 117-instruction)
and:-

a) the Y-address in the pre-modify instruction is not
replaced: the 15-bit Y, right-justified , from the
pre-modify instruction is added to the 24-bit result
of (i), (ii) or (iii).

b) the Y-address in the pre-modify instruction is
replaced: the 24-bit modifier in the replaced Y-
address of the pre-modify instruction is added to
result of (i), (ii) or (iii).

Thus a 24-bit effective shift-number is obtained. If
the m.s. bit of this is a 1, the shift-number is negated and
the shift takes place in the opposite direction to the nominal
sense for the function. Of the 24-bit shift-number (after the
negation, if any) the logical ‘or’ operation is performed
between the eighth bit from the l.s. end and each of the l6
m.s. bits, producing an 8-bit shift-number; in effect, if any
of the 17 m.s. bits is a 1, the eighth bit is made a 1. Hence
if the 24-bit shift number exceeds, in modulus, 255, the
actual number of places shifted is 128+ the l.s. bits of the
shift number. In such a case the result of a group 5
instruction is always zero but OVR may be set by an
arithmetical shift up. A consequence of this treatment of the
shift number is that a shift can never take more than one
millisecond.

3.5

Page 4

8.11.61

Function number 50 [0101 000]

3-address: z’ = x.2Y 2-address: x’ = x.2Y

Multiply the number x by 2Y, writing the result into Z
or X. The result is correctly signed and, if Y is negative,
rounded. OVR is set if the result is out of range.

Function number 51 [0101 001]

3-address: z’ = x.2-Y 2-address: x’ = x.2-Y

Divide x by 2Y writing the result into Z or X. The
result is correctly signed and rounded. OVR is set if the
result is out of range which can happen only if Y is negative.

Function number 52 [0101 010]

3-address: z’ = xL shifted logically up Y places.

2-address: x’ = xL shifted logically up Y places.

OVR cannot be set.

Function number 53 [0101 011]

3-address: z’ = xL shifted logically down Y places.

2-address: x’ = xL shifted logically down Y places.

OVR cannot be set.

Function number 54 [0101 100]

3-address: z:’ = x:.2Y 2-address: x:’ = x:.2Y

Multiply the double-length number x: by 2Y, writing the
result into Z and Z+1 or into X and X+1. The result is
correctly signed and, if Y is negative, rounded. OVR is set
if the result is out of range.

Note that the result is in standard form, i.e. with the
l.s. word non-negative even if the original d.l. number is not
in standard form. This means, for example, that if Y = 0 and
x* < 0, the result will be such that z:’ (or x:’) = x: but z*’

(or x*’) ≠ x*. Thus if, say xI = 247k-j then, after a 54-
instruction with Y = 0, zI’ = k-1 and z*I’ = 2

47-j giving z:I’ =
247(k-1) + (247-j)
 = 247k - j
 = x:I

3.5

Page 5

8.11.61

If, in a similar case, Y = 1 then the results would be
zI’= 2k-1 and z*I’ = 2

47-2j giving

z:I’ = 2
47 (2k-1) + (247 - 2j)

= 2 (247k - j)
= 2x:I

Function number 55 [0101 101]

3-address: z:’ = x:.2-Y 2-address: x:’ = x:.2-Y

Divide the double-length number x: by 2Y, writing the
result into Z and Z+1 or into X and X+1 . The result is
correctly signed and rounded. OVR is set if the result is out
of range which can happen only if Y is negative. The result
is left in standard form (see discussion under function-number
54 above). If the ‘partial justify’ sets OVR, the correct
result is still obtained, i.e. after a shift down OVR will
left clear.

Function number 56 [0101 110]

3-address: z:’ = x:L shifted logically up Y places.
2-address: x:’ = x:L shifted logically up Y places.

OVR cannot be set

Note that a special use of a 56-instruction is typified
by

56 A100 0 A7

which sets (A7)’ = (A100) and (A8)’ = (A101), i.e. copies two
consecutive words into two consecutive accumulators by a
single instruction, taking some 72 microsecs. as against 96
microsecs. for two 04-instructions. This use of a 56-
instruction is permissible since there is no ‘partial-justify’
operation when performing a logical shift.

Function number 57 [0101 111]

3-address: z:’ = x:L shifted logically down Y places.
2-address: x:’ = x:L shifted logically down Y places.

OVR cannot be set.

A 57-instruction may be used for a two-word copy as
discussed under function-number 56 above.

Another special use of a 57-instruction is to clear to
zero two consecutive accumulators. This done by e.g.

57 A0 48 A7

which takes some 72 microsecs. (the last 48 places shifted
take no time). Two 14-instructions take the same time but
occupy one more register and a 143-instruction clearing two
words takes about 80 microsecs.

3.6

Page 1

8.11.61

3.6 Group 6

The instructions of this group are ‘jump’ or
‘discrimination’ instructions. With function-numbers 60 to 65
a comparison is made between the signed 48-bit numbers y and z
while with function-numbers 66 and 67 the comparison is
between pY and z. (In 2-address form z = 0 for all function-
numbers). Depending on the result of this comparison the next
instruction obeyed is either that stored in register X or the
one stored in the next-higher numbered register to that
containing the ‘jump’ instruction itself. This is achieved by
arranging for the control-number either to be set to X
(strictly, to the machine-address represented by X, which may
be a Basic or a Symbolic Address) or to be increased by unity
from its current value.

The replacement and modification facilities operate in
the normal way; in particular the destination address X may be
replaced and/or modified. Such treatment of the X-address
yields a ‘switch’, that is, a single instruction which causes
the computer to follow one or another of several possible
courses of action, depending on the result of a comparison
between two numbers and on the value of a third number (a
modifier). Note that when a jump instruction does not cause a
jump, the destination address is not checked for lock-outs or
reservations, unless replaced.

Function number 60 [0110 000]

3-address: Jump to X if y = z 2-address: Jump to X if y=0.

Function number 61 [0110 001]

3-address: Jump to X if y ≠ z 2-address: Jump to X if y≠0.

Function number 62 [0110 010]

3-address: Jump to X if y > z (i.e. z < y)
2-address: Jump to X if y > 0 (i.e. y positive)

Function number 63 [0110 011]

3-address: Jump to X if y ≯ z (i.e. z ≥ y)

2-address: Jump to X if y ≯0 (i.e. y negative or zero).

Function number 64 [0110 100]

3-address: Jump to X if y < z (i.e. z ≥ y)
2-address: Jump to X if y < 0 (i.e. y negative, ys=1)

3.6

Page 2

8.11.61

Function number 65 [0110 101]

3-address: Jump to X if y ≮ z (i.e. z ≤ y)

2-address: Jump to X if y ≮ 0 (i.e. y non-negative, ys = 0)

Function number 66 [0110 110]

3-address: Jump to X if pY = z
2-address: Jump to X if pY = 0

Although pY can be the content of any of the pseudo-
registers, the most common use of this instruction is to test
the state of the overflow indicator, by reference to P4, P5,
P6 or P7.

Function number 67 [0110 111]

3-address: Jump to X if pY ≠ z
2-address: Jump to X if pY ≠ 0.

See comment under function-number 66.

3.7

Page 1

8.11.61

3.7 Group 7

The instructions of this group are concerned with
‘jumps’ in a manner similar to those of group 6. With the
present group, with the exceptions of function-numbers 76 and
77, the comparison is made between the 15- or 24-bit quantity
Y and the 24-bit modifier zm in accumulator z (or between Y
and zero if the instruction is of 2-address type).

If Y is used without replacement or modification, it is
essentially the 15-bit representation of the Y-address written
in the instruction (it may be written as an integer, signed or
unsigned, as a Basic or a Symbolic Address or as a combination
of any or all of these three) and is extended to 24-bits in
the arithmetic unit by prefixing the 15-bit quantity by nine
0-bits. If, however, Y is modified and/or replaced it is a
genuine 24-bit quantity. In all cases both Y and zm are
treated as unsigned.

Note that when a jump instruction does not cause a jump
the destination address is not checked for lock-outs or for
violation of reservations unless replaced.

Function number 70 [0111 000]

3-address: Jump to X if Y = zm

2-address: Jump to X if Y = 0

Some examples follow.

The instruction

70 A200 50 A7

will cause a jump to A200 if A7m = 50, the instruction

70 A200 (A100) A7

will cause a jump to A200 if A7m = A100m, while the instruction

70 A200 (A100)

will cause a jump if A100m = 0.

3.7

Page 2

8.11.61

An instruction such as

70Y A200 (A100) A7

will cause a jump if the l.s. 24-bits of [A100] + [A7] are
zero. This will be so either if

i) both [A100]m and [A7]m are zero

or ii) if [A100]m + [A7]m = 2
24, i.e. the addition

produces 24 0-bits and a carry into the 25th place, this carry
bit not being recorded by the computer logic.

Note that an instruction such as

70 A200 0

causes an unconditional jump but function-number 75 (q.v.) is
to be preferred for this purpose.

Function-number 71 [0111 001]

3-address: Jump to X if Y ≠ zm
2-address: Jump to X if Y ≠ 0

The examples given for function number 70 are also
applicable to function-number 71, with the equalities replaced
by inequalities.

Function number 72 [0111 010]

3-address: Jump to X if Y > zm (i.e. zm < Y)
2-address: Jump to X if Y > 0

Note that since Y is treated as unsigned, the 2-address
forms of the 71- and 72-instructions are equivalent in effect.

Function number 73 [0111 011]

3-address; Jump to X if Y ≯ zm (i.e. zm ≥ Y)

2-address; Jump to X if Y ≯ 0

Note that since Y is treated as unsigned, the 2-address
forms of the 70- and 73-instructions are equivalent in effect.

Function number 74 [0111 100]

3-address: Jump to X if Y < zm (i.e. zm > Y)
2-address: Jump to X if Y < 0.

Note that since Y is treated as unsigned, a 2-address
74-instruction will never cause a jump; it is the recommended
dummy.

Function number 75 [0111 101]

3-address: Jump to X if Y ≮ zm (i.e. zm ≤ Y)

2-address: Jump to X if Y ≮ 0.

3.7

Page 3

8.11.61

Since Y is treated as unsigned, a 2-address 75-
instruction will always cause a jump, regardless of the actual
value of Y. Therefore it is recommended as the standard
‘unconditional jump’. The Y-address field may, if desired, be
used to store any 15-bit quantity.

Function number 76 [0111 110]

3-address: Jump to X if ¬y & z = 0.

2-address: Jump to X if Y = 0 (not recommended)

With this function-number the decision whether to jump
or not is made on the result of a logical operation involving
two operands, z and y, of which y is usually a program
constant. The 76-instruction is designed primarily for
detecting field overflow. Suppose, for example that y is 07 17
034, and is stored in A100. Then the instruction

76 A200 A100 A7

will cause a jump to A200 if all of the first 7 bits and the
last 34 bits in A7 are zeros, that is, if all the 1-bits in A7
are contained within the field covered by the 1-bits in A100.
The mask y may contain any number of 1-bits distributed in any
desired way within the word. Note that the logical negation
of y occurs only in the arithmetic unit and associated
circuits and the stored word y is not affected.

Function number 77 [0111 111]

3-address: Jump to X if ¬y & z ≠ 0

2-address: Jump to X if Y ≠ 0 (not recommended)

This function-number is closely related to the 76-
function. It will cause a jump if there is one or more 1-bit
outside the field(s) covered by the 1-bits in the mask y. For
other comments see function number 76.

3.8

Page 1

8.11.61

3.8 Group 8

The instructions in this group fall into three
logically distinct sub-groups, respectively concerned with:-

 i) (80 to 83) counting, and stepping modifiers.

 ii) (84 and 85) searching for specified characters.

iii) (86 and 87) entering and leaving subroutines.

3.8.1 Function numbers 80 to 83.

By means of these functions a counter may be increased
or decreased by unity each time a loop of instructions is
obeyed until that loop has been traversed the desired number
of times; this event is indicated by the value of the counter
reaching some specified value.

In 3-address form the counter is the integer in
accumulator Z, while in 2-address form it is the integer in
register Y: if the counter is in an accumulator it may also
be used as a modifier within the loop (or elsewhere).

The completion of the cycling process is determined, in
3-address form, by comparing the new value of z with the value
of Y and, in 2-address form, by comparing the new value of y
with zero. In making these comparisons only the modifier half
of z or y is taken, limiting the value of the counter to 224-1

(≈16½ million).

The value of Y may be set as the address field of the
written instruction, in which case it is a 15-bit quantity, or
by replacement or pre-modification, when it is a 24-bit
quantity.

Function number 80 [1000 000]

3-address: z’ = z + 1; jump to X if zm’ = Y

2-address: y’ = y + 1; jump to X if ym’ = 0

Increase the counter by unity and jump if the result is
equal to Y (3-address) or zero (2-address). OVR is set if z’
(or y’) is out of range.

3.8

Page 2

8.11.61

Function number 81 [1000 001]

3-address: z’ = z + 1; jump to X if zm’ ≠ Y

2-address: y’ = y + 1; jump to X if ym’ ≠ 0

Increase the counter by unity and jump if the result
does not equal Y (3-address) or zero (2-address). OVR is set
if z’ or y’ is out of range.

A particular use of this instruction is in connection
with a ‘loop’ which is to be obeyed once only. For example, a
print sub-routine may be used repeatedly but the layout of the
printed page may require that the action the first time the
routine is used shall differ from the action on subsequent
occasions. If, then, a counter is set initially to -1, an 81-
instruction can be used to secure the alternative actions.

Function number 82 [1000 010]

3-address: z’ = z-1; jump to X if zm’ = Y

2-address: y’ = y-1; jump to X if ym’ = 0

Decrease the counter by unity and jump if the result is
not equal to Y (3-address) or zero (2-address). OVR is set if
z’ or y’ is out of range.

Function number 83 [1000 011]

3-address: z’ = z-1; jump to X if zm’ ≠ Y

2-address: y’ = y-1; jump to X if ym’ ≠ 0

Decrease the counter by unity and jump if the result is
not equal to Y (3-address) or zero (2-address). OVR is set if
z’ or y’ is out of range.

3.8.2 Function numbers 84 and 85.

These two functions are used to determine whether or
not a certain 6-bit character is present in a word. The
character sought is specified by its value in the chosen
internal code; this value is written as the Z-address in the
instruction. The hardware then tests each of the successive
6-bit fields in y for equivalence with Z. The instructions
indicate only whether the character is present or not; they
give no indication regarding the number of times that
character appears in the word, or its position within the
word.

If the instruction is of 2-address type then Z is
treated as zero and the character SP is sought.

3.8

Page 3

8.11.61

Function number 84 [1000 100]

3-address: Jump to X if character value Z is in y

2-address: Jump to X if character SP is in y

Function number 85 [1000 101]

3-address: Jump to X if character value Z is not in y

2-address: Jump to X if character SP is not in y

3.8

Page 4

8.2.62

3.8.3. Function numbers 86 and 87

86- and 87- instructions are designed primarily for
entering and leaving sub-routines. In both cases, the 2-
address form is the more conventional. In 3-address form Y is
irrelevant and is not checked, for lockouts or violation of
reservations unless replaced (see 2.2.23 and 2.2.24)

Function Number 86 [1000 110]

3-address: zm’ = c + 1, zs’ = OVR, OVR’ = 0, jump to X

2-address: ym’ = c + 1, ys’ = OVR, OVR’ = 0, jump to X

where c = control number (address of current instruction).

Enter subroutine at address X, leaving in ym or zm the
address of the word following the 86- instruction. Before
jumping, set the sign bit of y or z to 1 if OVR is set or to 0
if OVR is clear, leaving OVR clear. The address left in y or
z is the link for use by an 87- instruction in the subroutine.

An 86- instruction gives an unconditional jump and can
be used as such if it is desired simultaneously to ensure that
OVR is cleared.

The X- and- Y- addresses can be replaced or modified if
desired: replacement or modification of the X-address permits
the subroutine to be entered at a variable address from the
same point in the main program.

A three-address 86- instruction can be used to enter a
subroutine and set a fifteen-bit parameter (in the Y-address)
for use within the subroutine. Thus if the 86-instruction is

86 SUB/E PARAM SUB/L

then the parameter can be copied into X1 by:

04Y X1 -1 L

In this case the register holding the link must be an
accumulator. Note that this copies the whole 86-instruction
into X1: it does not isolate the parameter.

Function Number 87 [1000 111]

3-address: OVR’ = OVR ∨ zs, jump to X + zm

2-address: OVR’ = OVR ∨ ys, jump to X + ym

3.8

Page 5

8.2.62

Leave subroutine: on entry to the subroutine by an 86-
instruction, zm or ym was set to contain the address of the
next word. Thus, when an 87-instruction is obeyed within the
subroutine, an unconditional jump occurs to the word X+1 words
after the 86-instruction. Also the state of overflow when the
86-instruction was obeyed, is recorded in the sign bit of y or
z. If OVR was set immediately before entry to the subroutine
and/or OVR is set (and not subsequently cleared) during
execution of the subroutine, then OVR is left set after
obeying the 87-instruction, otherwise OVR is left clear.

The X- and Y-addresses can be replaced or modified if
desired: replacement or modification of the X-address permits
return to the main-program at a variable address.

3.9

Page 1

15.2.1962

3.9 Group 9

The functions of group 9 are concerned with floating-
point arithmetic. Function-number 96 is unassigned and
therefore illegal. For the other functions, the operands must
be in standard single-length floating-point form and the
result is given in the same form (except for function-number
97). Any attempt to obey floating-point instructions with
operands not in the standard form causes suspension due to
impermissible operand. Floating-point operations may be
rounded or unrounded at the programmer’s discretion (see
section 5.2.5).

In standard floating-point form, the m.s. 40 bits
represent xa, the ‘argument’ or ‘fixed-point part’. This is
a signed fraction which is either zero or lies within one
of the ranges

½ ≤ xa < 1 or -1 ≤ xa < -½

Since the arithmetic unit can accept one bit of overflow,
it is possible to, say, add two numbers to produce a sum
exceeding +1 and still have the correct floating-point result.

The l.s. 8 bits of the word represent the ‘characteristic’

xk. This is a non-negative integer in the range 0 to 255 and
such that the exponent xe = xk -128. Then the complete
floating-point number xG has the value

xG = xa. e
x
2

where -128 ≤ xe < 127.

If a floating-point number would be in the range

-2-129 ≤ xG < 2-129

then it is stored as zero (i.e. a clear word). Production of
such a result is termed ‘floating-point underflow’.

If an instruction would produce a result greater than
or equal to 2127 or less than -2127, floating-point overflow
results and either the overflow indicator is set or monitoring
action follows (see sections 5.2.3 and 5.3.23). This happens
if any of the functions 90 to 95 would produce a result
outside the above limits. If the program is not monitoring on
floating point overflow the result of the instruction is zero.

Note that there is no ‘copy’ instruction, such as xG’ =
yG : the 04 function performs this operation. Function-
numbers 102 and 103 are also associated with floating-point
operations.

3.9

Page 2

15.2.1962

Function-number 90 [1001 000]

3-address: zG’ = xG + yG 2-address: xG’ = xG + yG

Add the floating-point numbers in X and Y, writing the
result into Z or X.

Function-number 91 [1001 001]

3-address: zG’ = xG - yG 2-address: xG’ = xG - yG

Subtract the floating-point number in Y from that in
X, writing the result into Z or X.

Function-number 92 [1001 010]

3-address: zG’ = yG - xG 2-address: xG’ = yG - xG

Subtract the floating-point number in X from that in Y,
writing the result into Z or X.

Function-number 93 [1001 011]

3-address: zG’ = - yG 2-address: xG’ = - yG

Negate the floating-point number in Y, writing the result
into Z or X. OVR will be set if yG = -2

127. If yG = 2
-127

underflow will occur.

In 3-address form, X is irrelevant and it is recommended
that this form should not be used. If the 3-address is used,
the X-address is not checked for lock-out or reservation
violation unless replaced. In 2-address form, xG is read from
the store but is not used as an operand.

3.9

Page 3

15.2.1962

Function-number 94 [1001 100]

3-address: zG’ = xG.yG 2-address: xG’ = xG.yG

Form the product of the numbers in X and Y, writing

the result into Z or X, all numbers being in single-

length floating-point form. OVR is set if the result

exceeds capacity.

Function--number 95 [1001 101]

3-address: zG’ = xG/yG 2-address: xG’ = xG/yG

Divide the number in X by that in Y, writing the

result into Z or X, all numbers being in single-length

floating-point form. OVR is set if the result exceeds

capacity. If y=0 the program is suspended as with other

division instructions (see section 3.4).

Function-number 96 [1001 110]

 3-address: Unassigned, illegal 2-address: Unassigned,
illegal

Function-number 97 [1001 111]

3-address: zI’ = number of places through which (xG - yG)
must be shifted up to produce a result in
standard form.

2-address: As 3-address, but with xI’ = number of places.

Form (xG-yG) and count the number of places through

which the result must be shifted up to bring the argument

within one or the other of the standard ranges, then set

this shift-number as an integer in Z or X. Note that (xG-

yG) is formed only within the arithmetical unit and is not

stored. OVR cannot be set.

3.9

Page 4

15.2.1962

The main purpose of this function is to measure the
closeness to which the floating-point numbers agree, e.g. to
decide when an iterative process has been taken to sufficient
accuracy.

If xG and yG are exactly equal then

 zI’ or xI’ = 47

In borderline cases the number produced may differ by one from
that one would expect from the formula. The details of this
are too complicated to give here or to use in a programming
trick.

If xG-yG would need to be shifted down to bring it
within standard form the result produced is -1.

3.10

 Page 1

 7.3.1962

3.10 Group 10

The legal functions in this group are concerned with
converting data from one form to another within the working
store.

Function-number [1010 000]

(See also Section 4.4.6)

In the description of the effects of this function, the
following notation is used, in addition to that specified in
Section 0.4.

xi - the i-th character in the word x; i=0(l)7

yi - the i-th character in the word y; i=0(l)7

n - contents of a register in the arithmetic unit.

di - the value of the l.s. 4 bits of xi

Gi - the m.s. 2 bits of xi

ri - the value of the l.s. 4 bits of yi

Ti - the m.s. 2 bits of yi

F - denotes a failure; the Monitor Routine is entered
and the failure is regarded as being caused by an
impermissible operand (see 5.2).

3-address: z’ = r7(r6(.....(r1(r0z+d0)+d1)+....)+d7
2-address; x’ = r7(r6(.....(r1d0+d1)+d2)+...)+d7

OVR will be set if the binary integer would exceed single-
length capacity. This cannot happen from a single 2-address
100-instruction but may happen if using two 100-instructions
as in the example later in this section. Given a number, as
6-bit characters, in X, convert it to a binary integer
according to radices set in Y, writing the result into Z or X.
In 3-address form the initial content of Z is taken into
account in forming the binary integer but not in 2-address
form.

In essence, the function operates as follows:- in 3-
address form z is copied into a register in the A.U.; in 2-
address form this register is cleared. The content of this
register is then multiplied by r0, the value of the l.s. 4
bits of character y0. To the result is added d0, the value of
the l.s. 4 bits of character x0. Then this result is in turn
multiplied by r1, and d1 added. This process of multiplication
and addition is repeated until all characters have been dealt
with.

Since the radices ri are set by program, the 100-
instruction permits conversion of mixed-radix data.

3.10

 Page 2

 7.3.1962

It should be noted that the arithmetical processes
involved require that, in the chosen internal code, the
digits 0, 1, 2,, 11 shall be such that the values of
their l.s. 4 bits shall be the value of the digit, e.g. 7
must have 0111 as its l.s. 4 bits.

The various Ti, the m.s. 2 bits in each radix character,
are used to prescribe checks and special actions to be made
concerning the Gi, the m.s. 2 bits of the appropriate datum-
character; namely:-

If Ti is

 (i) 00, perform conversion if Gi is 00 or 01
 (ii) 01, perform conversion if Gi is also 01
(iii) 10, perform conversion regardless of Gi
 (iv) 11, perform conversion regardless of Gi and

also treat di as zero.

Also, in cases (i), (ii) and (iii) a check is made that di <
ri. Failure to satisfy any one or more of these checks leads
to an ‘impermissible operand’ interruption followed by entry
to the monitor routine.

(A flow-diagram of the full process is given on page
4 of this section.)

These checks are designed primarily to facilitate
reading from punched cards. In fact, the 100-function is
suitable only for fixed-format data; it should not be used
for variable-format data.

Referring to section 4.4 pp 2, 3 and 4, it is seen that
if a single hole is punched in a card column (usually
representing a digit 0 to 9 in the card code) then the v (or
xi) character formed on reading that column has the value of di
equal to the number of the row punched while Gi is made 01.
Thus, if this character is converted by a radix character with
Ti = 01, a check is made that there is one hole, and only one,
in rows 0 to 9 of the card, i.e. that the punching represents
a decimal digit. If the punching may be a single hole in any
row (i.e. a duodecimal digit) then Gi will be 00 (if rows 10
or 11 punched) or 01 (if single punching in rows 0 to 9) and,
to convert and check, Ti should be 00.

Ti = 11 may be used to ignore non-numerical

characters within the fixed format.

The various possible Ti, namely 00,01,10 and 11 may be
set on program input by adding 0, 16, 32 and 48 respectively
to the value of ri. Thus, to set ri = 10 and Ti = 01, the
character yi can be written as 26 or as 10+16.

3.10

Page 3

7.3.1962

If the characters to be converted are in a single word
and if the programmer is prepared to overwrite them by the
binary integer then a 2-address 100-instruction can be used.
If the characters occupy more than one word or if the
characters must not be overwritten, the 3-address form should
be used (in the latter case, Z must first be cleared to zero).

Thus, suppose that a sterling quantity has been read,
in character form into A100 and A101, the m.s. characters
being in A100. To produce a single-length binary result when
converted to pence, the sum must not exceed £586406201480/10/7
of which the first 7 digits (up to 5864062) may be right-
justified in A100, and the last 5 digits of £ together with
two digits for shillings and one for pence may be in A101.

To convert this sum to binary pence, the following
instructions may be used:

 14 ACC 0

 100 A100 RAD1 ACC

 100 A101 RAD2 ACC

with the radices

RAD1) 10, 10, 10, 10, 10, 10, 10, 10

RAD2) 10, 10, 10, 10, 10, 2, 10, 12

ignoring any checking requirements.

The first instruction clears an accumulator, ready to
receive the result of the first 100-instruction, which
converts the m.s. digits of £'s as an ordinary decimal number.
The second 100-instruction completes the decimal conversion of
the £'s and then carries out the mixed-radix conversions to
shillings and pence successively. (If the m.s. data-
characters are in an accumulator, the first instruction is not
necessary and the second can be 2-address.)

3.10
Page 5

30 10.63

Function Number 101 [1010 001]

In the description of this function-number, the following

notation is used, in addition to that of Section 0.4.

Ci, the complete 6-bit character formed in the

inner loop.

fi, the currently remaining fractional part of the
number being converted.

di, the value of the l.s. 4 bits of the character
formed in the inner loop

ri, the value of the l.s. 4 bits of the i-th radix-
character

Ti, the m,s, 2 bits of the i-th radix-character

β, an indicator. Initially clear, this is set

when the first significant character is formed.

θ, an indicator. It is set if the sign of the
number to be converted is not the same as the
sign of y, otherwise it is clear.

3-address: x’ = characters resulting from conversion of z
according to information in Y and Y+1.

2-address: x’ = characters resulting from conversion of x
according to information in Y and Y+1

Y contains an number by which z (or x) is to be divided
(see Examples in Section 10.2 for particular cases). Y+1
contains characters each of which represents one radix and
zero-suppression information for the appropriate character.
y=0 causes impermissible operand action.

A flow-diagram for the 101-instruction is given on page
7 of this section. Broadly, the operation of this instruction
can be described as follows.

The number N to be converted is read from Z or X. If

the signs of N and y are not the same, θ is set to record the
fact. N is then divided by y to give a non negative result

and the stored quotient is inverted if θ is set. The
fractional part is rounded up to 32 binary places.

If the integral part of the quotient is non-zero, OVR

and β are set to record the fact that preceding significant
digits exist (but will not be produced by this instruction
alone).

The fractional part f0 of the quotient is then
multiplied by r0. In general the result has an integral part
d0 and a fractional part f1. d0 is converted to the

appropriate character C0 (by adding l6 if d0 ≠ 0 or by special
action if d0 = 0), which is stored. Thereafter f1 is
multiplied by r1, giving d1, C1 and f2; f2 is multiplied by r2
and so on until all eight successive characters have been
formed. These are then written away in X.

3.10

Page 6

7.3.1962

The effects of the various possible Ti are:-

If Ti is 00 a non-significant zero is converted as: SP

If Ti is 01 a non-significant zero is converted as: 0

If Ti is 10 a non-significant zero is converted as: Full stop

If Ti is 11 a non-significant zero is converted as: UC

These Ti are set by adding 0, 16, 32 and 48 respectively to
the corresponding radix. It should be noted that a zero
produced by radix 1 or 2 (radix 1 always produces a zero) is
treated as non-significant, even though a significant digit
may have been produced previously.

OVR is set if:-

(i) |y| ≯ |z| (or |x| if 2-address) i.e. if, when z (or x)
is divided by y, the integral part is non-zero.

(ii) If θ is set (i.e. zs (or xs) ≠ ys) and the character
immediately preceding the first significant digit-
character is anything other than SP so that it cannot
be replaced by a minus-sign.

The number in Y is normally the product of the radices
given in Y+1. If this is not so the effect is to divide the

number to be converted by y/Πri - though care must be taken if
the result is required exactly as the initial division is only
evaluated to 32 binary places. For examples of this use of
the 101-instruction see section 10.2.

Note that if one of x or y is negative and no
significant digit is stored than the result is undefined.

3.10

Page 8

7.3.1962

Function Number 102 [1010 010]

3-address: zG’ = xF.2
Y 2-address: xG’ = xF.2

Y

Convert a fixed-point number to floating-point form;
multiply the fixed-point fraction in X by 2Y, Y being treated
as signed, and convert the result to standard single-length
floating-point form, writing it into Z or X. The conversion
may be rounded or unrounded (see section 5.2.5). Floating-
point overflow will occur if the result is numerically too
large (see section 5.2.3) and underflow if the result is
numerically too small (see 3.9).

Y may be regarded as a shift-number and is formed
according to the rules given in section 3.5, page 3.

The fraction xF may have been produced by some
arithmetical operation which set OVR. If the overflow was of
one bit only, the correct result from 102-instruction is still
obtained, as follows.

If, when the 102-instruction is encountered, OVR is
clear, the conversion proceeds normally. However, if OVR is

set then ±2.0 is added to xF before it is standardised, the
sign being opposite to that of xF. The number of places
needed to standardise the result (negative if OVR set) is then
subtracted from 128+Y and this result stored as the exponent
(l.s. 8 bits in xG). Thus it is necessary to ensure that the
state of OVR at the instant a 102-instruction is obeyed is the
same as its state immediately after the formation of xF,
regardless of what may have happened to OVR in the meantime.
Also, of course, derivation of xF by multiplication, shifting
or division may produce more than 1 bit of overflow.

OVR is left clear unless zG’ overflows.

Function Number 103 [1010 011]

3-address: zF’ = xG.2
Y 2-address: xF’ = xG.2

Y

Convert a floating-point number to fixed-point form:
multiply the standard single-length floating-point number in X
by 2Y, Y being treated as signed, convert it to a fixed-point
rounded fraction, and write the result into Z or X.

3.10

Page 9

7.3.1962

If x is not properly standardised, suspension will
occur/due to ‘impermissible operand’. OVR will occur if the
result is not within single-length range for a fixed-point
fraction.

Y may be regarded as a shift-number and is formed
according to the rules of section 3.5 page 3.

Function Number 104_ [1010 100]

Conversion after input from punched-card: given four
pairs of characters in X, extract the corresponding four
characters in the internal code from a code table starting in
Y, then:-

3-address: zu’ = zm, zm = the four characters formed.

2-address: xu’ = 0, xm’ = the four characters formed.

OVR cannot be set.

The main details of the conversion and sample code-
tables are given in section 4.4, pp.7 to 11. The generation,
by hardware, of the four pairs of characters in X is described
in section 4.4 pp.2, 3 and 4. Erroneous punching will be
detected either automatically on reading the card (case (iii)
of section 4.4.3) or by an ‘erase’ character being extracted
from the code-table to represent the wrongly-punched column.
The latter case can be detected by program by using an 84-or
85-instruction to search for ER in the result of the 104-
instruction (by putting Z=63 in the 84- or 85- instruction).

Suppose that a card has been read in Mode 2 into the
store area BUFF to BUFF+19, that the table of section 4.4 p.10
is in TAB to TAB+23 and that it is required to convert the
data from columns 1 to 8 to alpha-numeric characters in A7.
Then the instructions

 104 BUFF TAB A7

 104 BUFF+1 TAB A7

 84 ERROR A7 63

will do this and jump to ERROR if any of these eight columns
carried illegal punching.

3.10

 Page 10

 22.11.1962

If these columns represent purely numerical data to be
converted to binary it is not necessary to use the 104-
instruction, since the stored v characters are directly
related to the value of the numerical digit punched. Thus if
columns 1 to 8 represent the eight digits of a decimal number
(with zeros punched), the number may be converted to binary by

 52 BUFF 24 A7

 10 A7 (BUFF+1)

 100 A7 RAD

with

RAD) 10+16, 10+16, 10+16, 10+16, 10+16, 10+16, 10+16, 10+16

an error-interruption occurring if the punching in any column
is not confined to a single hole in rows 0 to 9, possibly with
punching in rows 10 and 11. Normally, a column punched in
both curtates represents a non-numerical character.
Consequently this method of conversion, by ignoring the u-
characters, may convert non-numerical characters (whether
punched legitimately or in error) as numerical characters.

The detailed action of the instruction is as follows:

Bits 2-5 of characters 0 and 4 of x are taken in the
order

D26,D27,D28,D29,D2,D3,D4,D5

the first five of these bits are used as the word modifier and
the last three as a character modifier, relative to Y. This
modifier gives a character from the table which is the first
of the four characters formed. The other three characters are
formed similarly from characters 1 and 5, 2 and 6, 3 and 7
respectively of x. If x has been read from cards in a coded
mode the bottom 4 bits of 0 are guaranteed to have a value
less than 12, whatever the punching, so that in this case a 24
word table is sufficient. If x is an arbitrary word, 32 words
of table may be needed.

Function Number 105 [1010 101]

Function Number 106 [1010 110]

Function Number 107 [1010 111]

These three function-numbers are unassigned and
therefore illegal in any form.

3.11

 Page 1

 13.4.1962

3.11 Group 11

Function-number 110 [1011 000]

3-address: x’ = (x & ¬y) ∨ (z & y)

2-address: x’ = (x & ¬y)

3-address: Insert bit from z into x wherever y has a 1,
leaving the bit in x unchanged wherever y has a 0.

2-address: Wherever y has a 1 make the bit in x an 0,
wherever y has an 0 leave the bit in x unchanged.

OVR cannot be set.

The word y is used as a mask or ‘filter’. The (x & ¬y)
operation leaves the bits of x unchanged in those digit-
positions where y has 0’s and puts 0’s in x wherever y has
1’s. In 2-address form, this is the result which is written
into X. In 3-address form, the process is continued by making
the bit in x the same as that in z in those positions where y
has 1’s. This result is then written into X.

There is no restriction on the number or positions of
the 1-bits in y; y=048 and y = 148 yield the trivial cases x’ =
x and x’ = z (or 0) respectively.

Function-number 111 [1011 001]

3-address: x’ = (x & ¬Y) ∨ (z & Y)

2-address: x' = (x & ¬Y)

Verbal description as for function-number 110 but with
Y in place of y. OVR cannot be set.

The mask Y is confined to the l.s. end of the word (15-
bits if Y is not modified or replaced, 24-bits otherwise) but
the arrangement of bits within this field is unrestricted.

3.11

 Page 2

 13.4.1962

Function-number 112 [1011 010]

3-address: x’ = (x & ¬pY) ∨ (z & pY)

2-address: x’ = (x & ¬pY)

Verbal description as for 110 but with pY (content of
pseudo-register) in place of y. OVR cannot be set.

Function-number 113 [1011 011]

This function is illegal.

Function number 114 [1011 100]

3-address: z’ = y y’ = x

2-address: x’ = y y’ = x

The three address form copies x and y to Y and Z
respectively; the two address form interchanges x and y. The
actual order of operations in the three address form is: read
x, read y, write z’, write y’. Thus the instruction

 114 A1 A2 A2

is equivalent to: 04 A2 A1

The most common use of the three address form is to
search through a list where a pointer to the previous entry
must be kept. The instruction

 114 (A1) A1 A2

has the effect of putting the next pointer into A1, preserving
the previous one in A2.

3.11

 Page 3

13.4.1962

Function-number 115 [l011 10l]

3-address: z’ = x + (Y shifted cyclically right 6 places)
with end around carry.

2-address: as 3-address but with x’ in place of z’.

Add the l.s. 6 bits of Y to the m.s. 6 bits of x and
the rest of Y to xm with end around carry, writing the result
to Z, 3-address, or to X, 2-address. Note that the end-around
carry continues until all carries have died down; e.g. if A1
contains the integer -1 then after the instruction 115 A1 64
it will contain the integer +1. The instruction is chiefly
used for stepping character modifiers as used with the 122 and
123 instructions (see section 3.12). It cannot set overflow.

Function number 116 [1011 110]

Add X, Y to the X and Y addresses of the next
instruction before any replacement in that instruction.

Function-number 117 [1011 111]

Add X, Y to the X and Y addresses of the next
instruction after any replacement in that instruction.

These two instructions are ‘premodify’ instructions -
they are used to get complex forms of address modification
which cannot be obtained with internal modification and
replacement only. The instructions may themselves be replaced
and/or modified as usual. The effective 24-bit X and Y
addresses are formed in the arithmetic unit as usual; they are
then held there until the next instruction has been extracted
from the store, when they are added to the X and Y addresses
of this instruction before replacement in the case of the 116
instruction, or after replacement for the 117 instruction.
Note that this addition takes place in the arithmetic unit
only - the instruction as stored is not changed.

3.11

Page 4

 13.4.1962

Example Suppose A51 contains the address of a table B whose
ith member (where i is contained in A63m) contains the address
of a table C. It is required to copy the jth member (where j
is contained in A6lm) of C into A49. Then:

 116Y 0 (A51) A63

 117 0 (0)

 04 A49 (A61)

will have the desired effect.

The above description applies to both the two and three
address forms of these instructions. The instructions are
basically two-address - in the three address form Z is ignored
and may be used to hold a constant if required.

A string of 116 and 117 instructions followed by a
substantive instruction are, in many ways, regarded as a
single compound instruction by the microprogram - for example
a program may not be interrupted in the middle of a string for
external reasons; if it is interrupted because, for example,
one of the addresses referred to is locked out, then the whole
string will be repeated when the program is next entered. In
engineers' mode the maximum length of a string is 13; in
programmers' mode a string longer than 13 causes entry to the
Monitor Routine which interprets it correctly - thus in
programmers' mode there is effectively no limit to the length
of a string - but strings longer than 13 will take about 50
millisecs to execute.

3.12

 Page 1

 19.4.1962

3.12 Group 12

Function Number 120 [1100 000]

(3) If Y > 0 zm’ = number of l-bits in bits 0 to Y-1 of x,
zs’ = inverse of bit Y of x; rest of z’ clear.

If Y = 0 zm’ = 0, zs’ = inverse of bit 0 of x; rest of
z’ clear.

If Y < 0 zm’ = number of 1-bits in bits 47 to 48+Y of
x.

zs’ = inverse of bit 47+Y of x; rest of z’ clear.

(2) As 3-address but with x’ in place of z’.

Count 1-bits (sideways add). If Y ≥ 0 then 1-bits are counted
from the m.s. end of x, if Y < 0 from the l.s. end of x. The
number of 1-bits in the first |Y| bits of x is written into zm
or xm and the sign bit of Z or X is set to the inverse of the
next bit of x.

The formation of the signed Y is done as described for
group 5 instructions (see 3.5 page 3). Note that if Y > 48 or

Y ≤ -48 the effect will be as if Y = 48 (except for the time).
This instruction is used in a wide variety of subtle
programming tricks, the most common being to form a dense set
from a scattered set.

3.12

Page 2

 19.4.1962

Function Number 121 [1100 001]

(3) z’ = x shifted circularly right Y places (Y signed).

(2) x’ = x shifted circularly right Y places (Y signed).

Shift x circularly right Y places if Y ≥ 0 or circularly left
-Y places if Y < 0 writing the result to Z (3-address) or to X
(2-address). The instruction cannot set overflow.

The signed shift number Y is formed as described in
section 3.5, page 3, except that if Y (after negation if
necessary) is greater than 255 the Monitor Routine is entered
- it takes the shift number modulo 48 and thus gives the
correct result.

Function Number 122 [1100 010]

(3) x’ = y shifted circularly left Z characters.

(2) x’ = y shifted circularly left zc characters.

In 3-address form y is shifted circularly left Z characters
(i.e. 6Z bits) and written into X - only the l.s. 3 bits of Z
are in fact used. This instruction is useful when it is
desired to shift and copy into a register (not an accumulator)
or into a replaced address. It is often faster than the 121
instruction as the shifting is done by characters in the store
transfer gates and the time is independent of the number of
places shifted.

In the two-address form z is effectively a character
modifier. The X and/or Y addresses are modified in the usual
way and the number of characters to be shifted is then taken
from the m.s. 3 bits of z; y is shifted circularly left this
number of character positions and written into X.

3.12

 Page 3

 19.4.1962

Thus if an integer in z is shifted circularly right 3 places
it may be used as a character modifier - i.e. when used as the
modifier in a Y modified 122 instruction, it will cause the
selected character to be placed in the m.s. 6 bits of x - i.e.
the 122 can be used as a table lookup instruction on a table
with entries of length 6, 12 or 24 bits. The desired
character can be made to appear at the l.s. end of x by
suitably arranging the table. The character modifier can be
stepped by a 115 instruction. Note that zc is always used to
modify the Y address (effectively) irrespective of whether X
or Y or both is modified.

Function Number 123 [1100 011]

(3) Append y to x:L Z3 characters down

(2) Append y to x:L zc characters down

where Z3 is the integer contained in the l.s. 3 bits of Z.

Append field: let n=Z3 (3 address) or zc (2 address). Then
the 123 instruction leaves the first n characters of x:L
unchanged, replaces the next 8 characters of x:L by the whole

of y and clears the remaining 8-n characters (note that 0 ≤ n
≤ 7).

The instruction is used to pack information head to
tail, usually over several words; the most common case being
the preparation of information for output. The three address
form can be used if it is known where within the words the
information is to be put; the two address form is used when
this is given by a character modifier as for the 122
instruction; for the 123 instruction it is usually convenient
to regard the character modifier as modifying X. After the
123 the character modifier can be suitably stepped by a 115
instruction - thus the packing can be done by 123 and 115
instructions without the programmer being conscious of word
boundaries.

3.12

Page 4

 19.4.1962

Function Number 124 [1100 100]

In this instruction x is shifted n places. Y is
treated as signed (see 3.5 page 3) and |Y| specifies the

maximum value of n unless Y>255 or Y<-255 in which case n≤255.

(3) If Y≥0 x’=x shifted up logically the number of places
required to shift off the m.s. 1-bit, but at most
Y places.

 z’=n if a 1-bit has been shifted off, otherwise
zs’=1 and zm’=n

If Y<0 x'=x shifted down logically the number of places
required to shift off the l.s. 1-bit, but at most
-Y places.

 z’=n if a 1-bit has been shifted off, otherwise
zs’ =1 and zm’=n.

(2) As for 3-address but x’=n (or xs’=1 and xm’=n). Find left
or right most 1-bit: x is shifted up or down (depending on the
sign of Y) until either a 1-bit has been shifted off or it has
been shifted |Y| places. The number of places shifted is
written into Z in the 3-address form and into X in the 2-
address form. If there are no 1-bits in the m.s, or l.s. |Y|
places of x then the sign bit of Z or X is set equal to 1.

An exception to the above rule occurs if X=Z in the 3-
address form. In this case, since z is written first

z’=x shifted up (or down) n places

and the number of places shifted is lost.

This instruction is commonly used to operate on fields
where each bit represents a distinct entity. Note that after
the instructions:

 124 SPUD 48 BUZZ

 53 SPUD (BUZZ)

the m.s. 1-bit of SPUD has been removed.

3.12

 Page 5

 19.4.1962

Function Number 125 [1100 101]

(3) x:F’ = (x:F+v)2
m

zI’ = zI - m

OVR’ = 0

where v = 0 if OVR is clear

 v =+2 if OVR is set and x<0

 v =-2 if OVR is set and x≥0

and m is chosen so that -1 ≤ m ≤ Y and

½ ≤ x:F’ < 1 or -1 ≤ x:F’ < -½

or m = Y, when -½ ≤ x:F’< -½

(2) Illegal

Standardise double-length floating point number. This
instruction is intended for use on double-length floating
point numbers (see Section 2.0 p.5(iv)). x:F is regarded as a
double-length argument and zI as the exponent. In general, x:F

is shifted up until it lies in the range ½ ≤ x:F < 1 or -1 ≤
x:F < ½ and the number of places shifted is subtracted from zI.
The instruction further assumes that if overflow is set, it is
only one bit and is due to a previous fixed-point operation on
x:F. In this case the correct value of x:F is formed in the
arithmetic unit before the standardising takes place. After
the operation OVR is left clear even if z overflows. Y is
used to specify the maximum number of places to be shifted and

if the number cannot be standardised with m ≤ Y then x:F is
left in the range -½ ≤ x:F < ½ and m=Y.

A number of special cases arise.

(i) If x:F is not a standard double-length fraction, i.e.
x*<0, an impermissible operand suspension will occur.

(ii) In the case where m = -1 (which can only happen if OVR
is set) x:F is shifted down unrounded.

(iii) The operations in the arithmetic unit take place in the
following order.

Read x - Read x* - Shift x: - write x - write x* - Read
z - Subtract m - write z.

3.12

 Page 6

 19.4.1962

If, therefore, Z = X or X + 1, m will be subtracted
from the appropriate operand (x’ or x*’).

Function Number 126 [1100 110]

(3) z’ + εy’ = x + εy + εv y’ ≥ 0 OVR’ = 0

where v = 0 if OVR clear; v = +2 if OVR set, y< 0; v = -2

if OVR set, y ≥ 0

(2) As 3-address but with x’ in place of z’

Justify double-length number. This instruction performs the
“carry” between the two halves of a double-length number - it
assumes that OVR, if set, was set in operations in the l.s.
half and that there was only one bit of overflow. It is thus
normally necessary to obey a 126 instruction after every
operation on the l.s. halves of double length numbers. The
value of the carry =

 0 if OVR clear y≥0

 -1 if OVR clear y<0

 +1 if OVR set y<0

 -2 if OVR set y≥0

This carry is added to x (and written into X or Z) and
OVR and ys are cleared, OVR will be left clear unless the
addition of the carry to x causes overflow.

If X=Y (2 address) or Z=Y (3 address) the arithmetic is
correctly performed and the single result obtained will be the
l.s. half (with sign bit and OVR cleared).

Function Number 127 [1100 111]

This instruction is illegal.

3.13

 Page 1

 19.4.1962

3.13 Group 13

Function Number 130 [1101 000]

Function Number 131 [1101 001]

Function Number 132 [1101 010]

Function Number 133 [1101 011]

Function Number 134 [1101 100]

Function Number 135 [l101 101]

Function Number 136 [1101 110]

Function Number 137 [1101 11l]

These instructions are illegal.

3.14

 Page 1

 22.6.1962

3.14 Group 14

3.l4.1 Instructions l40-143 - transfers, regions

The instructions 140 to l43 are concerned with
peripheral or other transfers normally affecting a block of
registers. Except for the 143 instruction - which copies
identical information to all words in the block - these
instructions occur in pairs, the second of which must always
be a 142; the first member of the pair is a 140, 141 or 142
for transfers involving peripherals, the drum and other parts
of the working store respectively. No instructions, other
than 116 or 117, are allowed between the two members of the
pair - an isolated 140, 141 or 142 instruction is illegal.
The pair of instructions, together with any 116 or 117
instructions before either or both members of the pair,
constitutes one compound instruction or string as described in
Section 3.11, page 4 and is subject to the restrictions
described there. Before the transfer is initiated the entire
region specified is checked for lockouts - the instruction
pair is locked out if any register in the region is locked
out.

Function Number l40 [1110 000]

Select device Y in mode M. (See Section 4.1 for modes.)

The instruction is normally written 140.M 0 Y where
M is an integer between 0 and 31 and Y is the name of the
peripheral. The mode, M, is stored in the m.s. 5 bits of the
X-address; the rest of X is not used (though if X is replaced
or modified, this is done normally, the mode being taken from
the corresponding place in the effective X-address). The Y
address should be written as an asterisk followed by two
letters and an integer between 0 and 31 e.g. *SP17. The
letters allowed are as follows:

SR = seven-track tape reader
FR = five-track tape reader
CR = card reader (80 cols)
VR = card reader (65 cols)
MT = magnetic tape
SP = seven-track tape punch
FP = five-track tape punch
CP = card punch
LP = line printer

Other more specialised devices will have appropriate
letter pairs allocated to them. The two letters are stored in
5 bits each (from A=1 to Z=26) followed by the 5 bits of the
integer to give the 15 bit Y-address e.g. *SP17 is compiled by
the input routine as

19 x 210 + 16 x 25 +17 = 19985

3.14

Page 2

22.6.1962

The machine address of a peripheral is an 8-bit number
usually known as the k-bits. The programmers’ address is
correlated with the machine address as follows: while the
program is running, absolute location 1 contains the address
of the program's directory entry. The eighth word of this
directory is the start of a table of the peripherals reserved
for the program - each entry of this table has the
programmers’ address of a peripheral device in its more
significant half and the k-bits in the less significant half -
the table being terminated by a clear word. The microprogram
of the 140-instruction searches this table in the same manner
as the 146-instruction (q.v.); if the programmers’ name is
found the corresponding k-bits are extracted. If the clear
word is reached without the programmers’ name being found then
action occurs due to peripheral violation. In Engineers and
Monitoring Modes this search does not take place and the Y-
address of the 140-instruction must be the actual k-bits.

The meaning of the mode depends on the peripheral
concerned - unassigned modes will cause suspension due to
illegal instruction. All legal modes are of odd parity and,
in general, modes with M<16 are for input transfers and M>16
for output transfers. For details of modes for individual
peripheral devices please see the appropriate parts of section
4. Mode 16 is rather special - in all cases it disengages the
device. The 140.16 instruction must be followed by a 142-
instruction as usual but the addresses in this 142-instruction
are neither read nor checked. Mode 13 interrogates the
specified device; it writes one word of information into the
address specified by the X-address of the following 142-
instruction - the Y-address is not used and may take any
value. The contents of this word are described in section
5.5. The 140.13, 142 instruction pair may be obeyed even if
the device is busy or disengaged - thus enabling a program to
test whether a device is engaged.

The above description applies equally to the two and
three address forms of the instruction - in the 3-address form
Z is not used.

3.14

 Page 3

 22.6.1962

Function Number 141 [1110 001]

Select drum in mode M, drum address Y.

The instruction is normally written 141.M 0 Y where M
is an integer between 0 and 31 and Y is a drum address,
relative to the program’s drum datum points.

For this instruction a temporary notation is introduced
- the fifteen bits of the X-address as written will be called
X9 to X23 (X23 being the l.s. end) - X0 to X8 being the nine bits
added during modification or replacement; a similar notation
is used for Y. In the simple case where the instruction is
not replaced or modified, the mode is taken from X9 to X13.
Bits X14 to X22 are added into positions Y0 to Y8 thus giving a
24-bit drum address. The 24-bit quantity may be written in
the Y-address and will be correctly spread over the X and Y
addresses by Basic or Symbolic Input - this is in fact always
done if a mode has been written in the instruction. Bit X23 is
ignored. If the X-address is replaced this combination of the
X and Y addresses does not take place - in any case all pre-
modification, replacement and internal modification are done
after this operation thus giving a 24-bit Y-address, i.e.
modification and replacement of X cannot affect the drum
address. The mode is taken from X9 to X13 after all
modification and replacement of X has been done in the usual
way.

There are only two normal modes available - mode 1 is
“read from the drum”, mode 21 is “write to the drum”. There
is also an “interrogate” mode, M=13, but this does not give
any information of use to the ordinary programmer; it is used
within the Monitor Program.

When the machine is in Engineers’ Mode the drum
address, built up as above, is the actual address used on the
drum. In Programmers’ Mode the drum datum point has to be
added and a check made that the region specified is in the
program's reserved region. The microprogram of the 141-
instruction looks at the word before the program’s index word
(whose address is given in absolute location 1); this word
contains 224-N in its upper half, and D in its lower half where
D is the drum datum point and N is the number of words in the
reserved region.

If the machine has more than one drum control the
situation is rather more complicated. The program may now
have several disconnected regions, one on each control, though
they appear consecutively numbered to the programmer. Suppose
the program has regions starting at D1, D2, D3 of length N1, N2,
N3 respectively. Then the microprogram searches a table
backwards starting at the word before the index word:
successive entries in this table are:

224-N1, D1; 2
24-N1-N2, D2-N1;

224-N1-N2-N3, D2-N1-N2; etc.

3.14

Page 4

 22.6.1962

The search terminates when an entry is found such that
adding the specified drum address to the upper half does not
cause a change of sign or alternatively by the entry: 224-1, 0
which terminates the table. If the transfer specified
overlaps two or more regions the Monitor Program is entered -
it splits the transfer into the appropriate transfers on the
separate regions and obeys them successively.

The above description applies equally to the two and
three address forms of the instruction - in the 3-address form
Z is not used.

Function Number 142 [1110 010]

(a) After 140 or 141 instruction. Transfer Y words or
characters to or from region starting at X.

(b) A pair of 142 instructions thus; 142 X1 Y1

 142 X2 Y2

Copy Y2 words from region starting at X2 to region
starting at X1 (Y1 is ignored).

(a) After a 140-instruction the 142-instruction causes a
transfer to be executed on the device and in the mode
specified by the 140-instruction. The working store region
involved in the transfer starts at X and the transfer is of
length Y words or characters, according to the device;
sometimes Y specifies a maximum - e.g. read up to NL or at
most Y characters. Y may not exceed 32767.

E.g. the instruction pair

 140.1 0 *SR1

 142 BUZZ 40

Says “read up to NL or at most 40 characters from *SR1
and store them starting at working store address BUZZ”. Note
that the whole region specified (in this case from BUZZ to
BUZZ+4) is checked for lockouts and reservations before the
transfer is initiated so that the whole region must be within
reservations even if the very first character is NL.

3.14

 Page 5

 22.6.1962

Similarly after a 141-instruction a transfer is
initiated to or from the drum (according to whether the mode
in the 141 is 21 or 1) from or to the working store area
starting at X and of length Y words.

It is illegal for a 142 after a 140 or 141 to have Y=O
(except for those modes which do not do a transfer).

(b) A pair of 142-instructions does an internal transfer of
length Y2 words from the region starting at X2 to that starting
at X1. The Y-address in the first 142, Y1 , is ignored. Y2
may be zero, in which case the pair has no effect. The
regions

X1 to X1+Y2-1 and X2 to X2+Y2-1

must both be within reservations and are checked for lockouts.
The transfer proceeds starting at the last word and working
backwards unless the last word of the destination region lies
within the source region - in which case it works forwards,
thus always ensuring the correct result. The instruction pair
is harmless if X1=X2.

Note that whereas peripheral and drum transfers are
merely initiated by the 142-instruction and subsequently
proceed autonomously while the computer carries on with the
program, internal transfers are executed immediately - as they
use the core store full time.

The two and three address forms of the 142-instruction
are identical - i.e. in the three address form Z is ignored.

In the case of peripheral and drum transfers the term
16Y represents the hesitations involved in the transfer -
these are actually charged to the program when the instruction
is obeyed but take place later - the timer of the program
running hesitates when the computer hesitates to allow a word
to be read from or written to the core store. If the running
program is not using the core store at the time it gets these
16 microsecs free. In the cases where Y specifies a maximum
the program is charged for the full number of hesitations even
though they may not all take place. Every peripheral or drum
transfer causes at least one entry to the time-sharer. The
time spent in the time-sharer is not included in the above
times, neither is it charged.

In the case of the 142-pair Y should be read as Y2 for
both instructions - i.e. the time for the 142-pair is the
fixed part of the times for the instructions plus 32 microsecs
per word transferred.

3.14

 Page 6

22.6.1962

Function Number 143 [1110 011]

(3) Write z to Y words starting at X.

(2) Clear (zeroize) Y words starting at X.

This instruction writes the same quantity (z or 0) into
every word of the region X to X+Y-1. The whole region is
checked for reservations and lockouts before the instruction
is obeyed. If Y=0 the instruction is a dummy. The 3-address
form with Z=A0 is treated as illegal by the hardware but is
correctly interpreted by OMP. Its use is not recommended; it
does nothing which cannot be done by the 2-address form.

3.14.2 Instructions 144-146: Table Search

The instructions 144, 145, 146 all search a table to
find the first number with a particular property. The table
starts at X and the first number w (in location W) is found
such that w satisfies a particular inequality or equality
(according to function) relative to y. W is then written into
Z. At the start of the instruction the microprogram does not
know how far it will have to search so it checks lockouts and
reservations as it goes along. It is recommended that all
tables to be searched should be terminated by a word
guaranteed to end the search (otherwise if a wrong y comes
along the search may continue till reservations are violated;

such a word should be 1-ε for the 144-instruction, -1.0 for
the 145-instruction and any word with a zero lower half for
the 146-instruction.

These instructions are all essentially 3-address
instructions - the two-address forms are illegal.

Function Number 144 [1110 100]

(3) W=address of first w such that W≥X, w≥y. Then z'=W.

(2) Illegal.

Search a table starting at X to find the first number w
such that w is greater than or equal to y. Then the address
of w is written into Z.

3.14

 Page 7

 22.6.1962

Function Number l45 [1110 101]

(3) W=address of first w such that W≥X, w≤y. Then z'=W

(2) Illegal.

Search a table starting at X to find the first number w
such that w is less than or equal to y. Then the address of w
is written into Z.

Function Number 146 {1110 110]

(3) W=address of first w such that W≥X, wu =yu or wm =0. Then
z'=W

(2) Illegal.

Search a table starting at X to find the first number w
such that the upper half of w equals the upper half of y or
the lower half of w=0. Then the address of w is written into
Z.

Function Number 147 [1110 111]

 This instruction is illegal.

3.14

 Page 8

 1.8.65

The information in this section refers in general both to
Orion 1 and Orion 2. Described here are the differences to be
noted when reading this for Orion 2.

Differences arise because the object program’s peripheral
transfer instructions are extracoded. (See 4.1 for more
details)

The K-bits on Orion 2 are sequential and are not checked for
odd parity.

The 143 instruction - the 3-address form with Z = A0, is not
treated as illegal by the hardware.

3.15

 Page 1

28.6.1962

3.15 Group 15 Time-sharing instructions

The instructions of group 15 are illegal in
programmers’ mode (except the three-address 150 instruction,
which is specially treated by the monitor program); they are
used in monitoring mode for special purposes, mainly connected
with time-sharing. They are described below for the sake of
completeness but any attempt to use them (except in the
monitor program) will cause suspension due to illegal
instruction. 15 group instructions in engineering mode have
the same effect as in monitoring mode except that the 152-
instruction does not enter programmers’ mode.

The pre-150 instruction

When a program running in programmers’ mode is
interrupted for any reason a special piece of built-in micro-
program called the pre-150 instruction is obeyed. An
instruction cannot be read from store until the information in
the arithmetic unit, about the program being interrupted, has
been stored; so this special built in instruction is obeyed.

The first action of the pre-150 instruction is to set
the monitoring stat - this inhibits further interruptions,
removes restrictions on reservations etc. and validates group
15 instructions. The machine is now in monitoring mode.
Absolute location 1 is now read - it gives the address of word
0 of the program’s directory. The control address of the
program is now written into the modifier position of word 2 of
the directory and overflow in the sign bit - i.e. the link is
stored in word 2 in the same manner as the 86 instruction
stores it and overflow is cleared. Next the program timer is
added into word 1 of the directory; if word 1 is positive
after this addition this means that timer overflow has
occurred i.e. the program has exceeded the time requested -
and program failure is set as a reason for entry. The pre-150
instruction now writes the requirement of the program just
left into the upper half of word 0 of the directory - the
lower half being left unaltered. The requirement is as
follows:

(a) Peripheral lockout - D0, D1 are clear, the k-bits of the
device concerned are stored in D16 to D23 and the mode in
D11 to D15.

(b) Drum lockout - D0, D1 are 10 with the m.s. 4 bits of the
24-bit absolute drum address (specifying the drum control
number) in D20 to D23. These are clear for machines with
only one drum control.

(c) Core store lockout - D0, D1 are 01 with the address
locked out in D9 to D23. In all other cases the upper
half of word 0 is cleared.

The pre-150 instruction ends by jumping to absolute
address 2.

Timing The pre-150 instruction takes approximately 160
microsecs.

3.15
 Page 2

 28.6.1962

Function number 150 [1111 000]

(a) Programmers’ mode

(3) Enter Monitor program to perform action Z,
operands X and Y.

(2) Illegal.

This instruction, in programmers’ mode is treated
specially by the Monitor program. For further details see
section 5.3.

(b) Monitoring and Engineers’ Mode

Jump to Y if there is no reason for entry, otherwise x’
= reason for entry. This instruction is normally obeyed in
absolute address 2, immediately after the pre-150 instruction.
The cases where there is no reason for entry are core store
lockout, end of transfer and one second since last interrupt.
The reasons for entry (and their values) are:

Peripheral lockout 128
Core store parity failure 32
Peripheral or drum incident 64
Reservation line parity failure 16
Spring cleaning (one minute) 8
Program incident 4

If there is no reason for entry the instruction simply jumps
to Y and does not write to X. If there is a reason for entry
the instruction does not jump and the integer representing the
appropriate combination of reasons (most commonly only one
reason) is written into X.

If the 150 instruction is obeyed in engineers’ mode -
or immediately after switching to programmers’ mode - a reason
for entry may come up due to some of the “reason for entry”
stats having been set some time previously - these stats are
only cleared by the 150 instruction. The two and three
address forms are identical - Z is not used in the 3-address
form.

Timing (microsecs)

 Jump No Jump

3-address : 20 36
2-address : 40 56
2-address unmodified : 20 36
plus 16 microsecs for each replacement.

Function number 151 [1111 001]

(a) Programmers’ Mode This instruction is illegal.

3.15

 Page 3

 28.6.1962

(b) Monitoring and Engineers’ Mode

Search a list starting at Y till a word is found whose
upper half is a satisfied requirement. x’ = address of this
word.

The index words of the programs in the machine are in
the form of a list - i.e. the lower half of each contains the
address of the next, the upper half containing the requirement
as described above under the pre-150 instruction. If the
requirement is clear it is always satisfied; if it is a
peripheral, the drum or a core store location the appropriate
check takes place to see if it is now available; if D0 and D1
of the requirement are 11 the requirement is considered as not
satisfied - this combination is never written by the pre-150
instruction but is inserted by the monitor program if it is
necessary to stop a program for any reason.

The 151 instruction examines these words in turn,
starting at y, and it looks at successive entries (effectively
by repeated replacements) until an entry is found whose
requirement is satisfied - the address of this word is written
to X. It is normal for X to be absolute address 1 since 1
must contain the address of the index word when the program is
entered.

The 151 instruction is the same in the two and three
address forms - in the three address form Z is not used.

Timing (microsecs)

3-address : 48 + l6(n+m)
2-address : 68 + l6(n+m)
2-address unmodified : 48 + l6(n+m)

plus 16 microsecs for each replacement where n is the number
of words searched and m is the number of those whose
unsatisfied requirement is a core store lockout.

Function number 152 [1111 010]

(a) Programmers’ Mode This instruction is illegal,

(b) Monitoring and Engineers’ Modes

Enter programmers’ mode setting the reservations from
x, jump to ym setting OVR if ys =1

This instruction is used to exit from the time-sharer.
The Y address specifies the point at which ordinary program is
to be entered - it is treated as a link in the same form as
used by the 87 instruction. The reservations and monitoring
conditions are taken from x as follows:

D9 to D23 of x is the lower reservation and datum point
(D18 to D23 should always be zero) - D33 to D47 of x is the upper
reservation (i.e. the last location within reservations);

3.15

 Page 4

 28.6.1962

D0, D1, D24, D25 are set to 1 if monitoring on signals,
overflow, jumps and floating point overflow respectively is
required. D2 is a 1 for strong reservations (normally the
case) and D26 is a 1 if floating point operations are not to
be rounded.

Before the 152 instruction is obeyed absolute location
1 must be set (usually by a 151 instruction) as the address of
word 0 of the program’s directory. Since the link is held in
word 2 of the directory (since that is where the pre-150
instruction stores it) and the reservations are conventionally
held in word 5 of the directory the usual form of the 152
instruction is:

 152XY 5 2 1

In engineers’ mode the reservation lines are ignored and the
152 instruction obeys the link in Y and sets the monitoring
condition stats.

The 152 instruction is the same in the two and three
address forms - in the three address form Z is not used.

Timing (microsecs)

3-address : 72
2-address : 92
2-address unmodified : 72
plus 16 microsecs for each replacement.

Function number 153 [1111 011]

This instruction is illegal in all modes.

Function number 154 [1111 100]

(a) Programmers’ Mode This instruction is illegal.

(b) Monitoring and Engineers’ Modes

Jump to Y if device not failed or write failure
information to X and abandon the transfer. This instruction
should be preceded by a 140.13 or 141.13 instructions to
select a peripheral device or drum control.

When a program is interrupted due to a peripheral or
drum incident the 150 instruction only gets 1 bit of
information saying that this has occurred. It is necessary to
interrogate all the devices until one of them says it has
failed - it says this by the 154 instruction failing to jump.
Thus the 154 instruction (preceded by a Y replaced 140.13
instruction) is used at the end of a loop scanning the
peripherals - the loop is left when the failed device has been
found. A word of information about the device is written into
X and the transfer abandoned. This information consists of
the current and finishing addresses of the transfer, which are
written into D9-D23 and D33-D47 respectively, and a number of
bits, giving either the type of failure or the state of
various staticisors in the device, are written into D0-D7 and
D24-D31. For further

3.15
 Page 5

28.6.1962

details of this information see the relevant parts of section
5.5.

In the case of the drum two words are obtained. The
word written into X is similar to that for peripherals and in
addition the failing drum address is written into X+1. For
details of the information bits see section 5.5.5. The drum
address in the preceding 141.13 instruction may be any address
on the required drum control.

The 154 instruction is the same in the two and three
address forms - in the three address form Z is not used.

Timing (microsecs)
 Jump No Jump
3-address : 20 116
2-address : 40 136
2-address unmodified : 20 116
plus 16 microsecs for each replacement.

Function number 155 [1111 101]

(a) Programmers’ Mode This instruction is illegal.

(b) Monitoring and Engineers’ Mode Abandon transfer on
selected device.

This instruction should be preceded by a 140.13 or
141.13 instruction to select a peripheral device or drum
control - the instruction then abandons the transfer, if any,
on the selected device. In the case of character devices the
155 instruction abandons whatever transfer happens to be
taking place on the control containing the selected device.
The addresses are not used in the 155 instruction - they may
have any value and there is no distinction between the two and
three address forms.

Timing The 155 instruction takes about 20 microsecs.

Function number 156 [1111 110]

This instruction is illegal in all modes.

Function number 157 [1111 111]

(a) Programmers’ Mode This instruction is illegal.

(b) Monitoring and Engineers’ Mode Stop, displaying
addresses.

The machine stops after obeying the instruction and
will continue with the next instruction if the STOP and RUN
buttons are pressed. The function lights say 157 and the TX
and/or TY lights are lit in the 2-address case. The X and Y
addresses, after all modification and replacement, can be seen
in the upper and lower halves of H respectively. In the 3-
address form Z is displayed in the upper half of J - in the 2-
address form the upper half of J is the same as the upper half
of H. The lower half of J is the address of the next
instruction and the single step button causes the next
instruction to be obeyed without being displayed.

3.15

Page 6

1.8.65

The information in this section refers in general both to
Orion 1 and Orion 2. Described here are the differences to
be noted when reading the section for Orion 2.

Note timings are not correct for Orion 2.

The pre-150 instruction

Subsection (a) On Orion 2 D11 to D15 are clear.

Subsection (b) On Orion 2 these are not necessarily clear.

Function Number 150

Subsection (b) Core store parity failure and reservation
line parity failure are not reasons for entry. If they do
occur then the machine comes to a stop.

Function Number 152.

D18 to D23 need not be zero in X.

Function Number 156.

This instruction is not illegal in Monitoring and Engineers'
Mode. Its effect is to jump to X if peripheral Y is involved
in a transfer which is not completed.

Function Number 157

Subsection (b) This instruction stops the machine and
displays X, X+1 (where appropriate) Y and Z addresses on the
control panel in the appropriate registers. By carrying out
appropriate action, the machine continues by obeying the next
instruction etc.

