
2.0

Page 1

30.9.61

2.0 The Orion Word

In Orion the word (the content of one register or drum

location) is 48 bits long. These binary digits are numbered

from 0 (the most significant) to 47 (the least significant).

Within the working store and on the drum a 49th bit is

attached for parity checking. This parity bit is not

accessible to the programmer.

The programmer may interpret words in many ways, the

most common of which are described below.

2.0.1. The word as an instruction

Each machine instruction occupies the whole of one 48-

bit word. The bits in the stored instruction are allocated as

in the diagram and table below.

7 2

6

1
4 3

1

15
1 1

1

15

 S F TX X R Z TY Y

 G P RX RY

Symbol Bits Significance

S

D 0

Signal bit: if zero the

instruction may not be obeyed:

see section 5.2 page 2

F G

H

Dl to D4 D5

to D7
Function, group G (0 to 15), position

in group P (0 to 7)

TX

D 8

Type (X) 1 if X-address is to be

modified by zm, or if instruction is of

unmodified 2-address type

X D9 to D23 X-address; 0 to 32767

R RX

RY

D 24

D 25
1 if X-address is to be replaced

1 if Y-address is to be replaced

Z

D26 to D31

Z-address; 0 to 63 (0 if instruction of

unmodified 2-address type)

TY

D 32

Type (Y). 1 if Y-address is to be

modified by zm

Y D33 to D47 Y-address; 0 to 32767

2.0.2 The word as a number.

Regarded as a number, a word may be interpreted in

several different ways.

2.0

Page 2

30.9.1961

a) A Fixed-Point Integer

When a word is interpreted in this way, D0 is a sign

bit; 0 if the number is non negative and 1 if the number is

negative. Integers are held exactly: a single 48-bit word can

represent any integer in the range:

-247 ≤ xI ≤ 2
47-1 = 140,737,488,355,327

 ≈ 1.4 x 1014

A negative integer is represented by its complement

with respect to 248.

b) A Fixed-Point Fraction

When a number is regarded as a fraction, the sign of

the fraction is given by the m.s. bit, in the same way as with

integers. A single-length word can be regarded as a "fraction"

within the range

-1.0 ≤ xF ≤ 1.0 – 2
-47

its value being an integral multiple of 2-47. (Note also that

xF = εxI, where ε = 2
-47). A negative fraction is represented

by its complement with respect to 2.

If it is required to store, single length, a fraction

which is not an exact multiple of 2-47, the number which is

actually stored is the required fraction rounded to the

nearest multiple of 2-47, or to the numerically greater

multiple of 2-47 if the required number is an odd multiple of

2-48.

c) A Fixed Point mixed number

Since the binary point has significance only to the

programmer, and not to the computer, it follows that the

programmer can imagine the binary point to be in any desired

position. In general, therefore, the binary point can be

considered to be n places up from the l.s. end, i.e. between

D(47-n) and D(48-n). Then, with D0 as the sign bit, the (47-n)

bits Dl to D(47-n) may be used to represent an integral part,

and the n bits D(48-n) to D47 may be used to represent a

fractional part, permitting storage of mixed numbers such as

+10.7, -1257.813 etc. Denoting the value of a word regarded

as a mixed number, by xs it can be expressed as

 xs = xI 2
-n = xF.2

(47-n)

It is an integral multiple of 2-n and lies within the range

 –2(47-n) ≤ xs ≤ 2
(47-n) – 2-n

2.0

Page 3

30.9.1961

(As an alternative to imagining the number as being stored

with the binary point somewhere along the word, it can be

regarded as being stored as the integer or fraction which

represents the mixed number multiplied by a suitable scaling

factor; thus

xI = xs.2
n and xF = xs.2

-(47-n)

A particular case of the mixed number is the single-

length mid-point number with n = 24. (223 = 8,388,608).

d) A Floating-Point Number

To represent a number in standard floating-point form

in Orion, the 48-bit word is divided into two fields. The

first field, D0 to D39, represents the signed fractional

argument of the number, and bits D40 to D47 represent the non-

negative “characteristic”. The signed integer equal to the

characteristic minus 128 is the exponent of the floating-point

number; the complete floating-point number has the value

ex

aG
xx 2.=

The argument is zero or lies within one of the ranges

½ ≤ xa < 1 or -1 ≤ xa < -½,

depending on its sign, and the exponent lies within the range

-128 ≤ xe ≤ 127

Floating-point numbers have about 11 or 12 significant decimal

digits; the largest numerical value representable in this way

has a magnitude of about 1038.

e) Double-Length Numbers

If the contents of two consecutive registers are

regarded as parts of a single number, that number is known as

a double-length number. (In general, the full product of two

single-length numbers is a double-length number.)

A convention normally adopted is that the m.s. bit of

the second (l.s.) word is zero, the d.l. number is then said

to be in 'standard form'. Regarded as a single-length number,

the l.s. word is therefore non-negative. As with single-

length numbers, the binary point may be imagined to be in any

desired position.

The instruction with function number 126 is

specifically designed for use with double-length numbers.

2.0

Page 4

30.9.1961

i) Double-length integers.

Let the values of the m.s. and l.s. words, regarded as

single-length integers, be xI and xI* respectively. Then the

value of the double-length integer formed from xI and. xI* is

x:I = xI.2
47 + xI*

and lies within the range

-294 ≤ x:I ≤ 2
94-1 [294 ≈ 1.98 x l028]

if it is in standard form (i.e. with xI* non-negative).

The principal advantage of using double-length integers

lies in the increase in the permissible magnitude of the

number which can be stored.

ii) Double-length fractions

If xF and xF* are the values of the individual words

regarded as single length fractions, the value of the double-

length fraction is

x:F = xF + εxF*

where ε = 2-47

If it is in standard form, a double-length fraction lies

within the range -1.0 ≤ x:F ≤ 1.0 - 2
-94

and is an integral multiple of 2-94

x:F = x:I.2
-94

Use of double-length fractions increases the precision

to which a general fraction can be represented in the

computer.

iii) Double-length mixed number

By considering the binary point to be at some arbitrary

position in the double-length number, mixed numbers can be

held in double-length form.

Let the binary point be m places up from the extreme

right hand end of the double-length number.

Then if m ≤ 47, the value xs of the double-length mixed

number is x:s = x:I.2
-m

It lies within the range

-2(94-m) ≤ x:s ≤ 2
(94-m) - 2-m

and is an integral multiple of 2-m.

2.0

Page 5

30.9.1961

If, on the other hand, m >47, the value of x:s is

x:s = x:I.2
-(m-1)

and lies within the range

-295-m ≤ x:s ≤ 2
95-m – 2-(m-1)

The difference between the cases m ≤ 47 and m > 47 arises

from the special treatment of the sign-bit of the second

(l.s.) word in double-length working.

A particular case is when m = 47 or 48 (these two cases

are equivalent, from the discussion above). The binary point

is then, effectively, between the two words; the m.s. word is

then regarded as an integer and the l.s. word as a (usually

non-negative) fraction.

In this form, known as standard double-length mid-point

representation, the number has the value

x:M = xI + xF*

The range of values is –247 ≤ x:M ≤ 2
47 –2-47

and the stored number is an exact multiple of 2-47.

Double-length mid-point numbers arise naturally as the

full d.l. product (produced in Orion by the 32-function) of an

integer and a fraction. Double-length mid-point numbers also

arise as the quotient given by the 42-instruction.

(iv) Double-length floating-point numbers.

If two consecutive words are used to store the

standardized fractional argument, and a third word is used to

store the exponent, then floating-point numbers can be stored

with greater precision and with a larger range of exponents

than can be attained with the standard packed (single-word)

floating-point form.

The double-length argument is standardised to be zero or

to lie, usually, within one of the ranges

½ ≤ x:F < 1 or –1 ≤ x:F < -½

or in special circumstances

-½ ≤ x:F < ½

The instruction with function number 125 is specifically

designed for standardising numbers in this form.

f) Multiple-length numbers.

Any of the number types (integer, fraction, mixed or

floating-point) can be stored in more than two words if

desired, to increase the possible magnitude and/or precision

of the stored number.

2.0

Page 6

30.9.1961

The extensions from the double-length form to the

general multiple-length form are straightforward and not

detailed here (in general only the m.s. word of such a fixed-

point number is allowed to be negative).

2.0.3 The word as a set of characters

Generally a character is a numeral, a letter of the

alphabet, a symbol (such as + £ / : etc.) or a non-printing

character associated with printing layout (space, newline,

tabulate, etc.)

The 'character' which is stored within Orion is, in

fact, an arrangement of bits used to represent that character

inside the computer according to some arbitrary code.

One particular code, which is recommended for use

whenever practicable, is the Ferranti Flexowriter Code (see

Section 0.5).

Normally the internal code is such that each character

is represented by a single 6-bit field; eight such fields

(characters) can be packed into each 48-bit word. The eight

characters in a word are conventionally denoted C0, C1,

C2....C7, where C0 is that field comprising bits D0 to D5, C1

occupies D6 to D11..... and C7 occupies D42 to D47.

An alternative notation is to denote the eight

characters in the word in register X by x0, x1,, x7.

The 6-bit field representing a particular character can

be regarded as a 6-bit unsigned binary integer; the value of

this integer (0 to 63) is termed the value of the character.

To facilitate the input of characters to Orion, the

symbolic input routine allows a line (which may or may not be

labelled) on a program sheet to be written in a form typified

by 0, 7, 47, 6, 50, 41, 47, 46 i.e. as eight integers in the

range 0 to 63 each separated from its neighbours by a comma.

Each of the successive 6-bit fields in the word is set on

input to the 6-bit representation of the integer in the

corresponding position of the line. Thus in the above case,

the settings will be as follows:

D0 to D5; 000000 (0)

D6 to Dll; 000111 (7)

D12 to D17; 101111 (47)

D18 to D23; 000110 (6) etc.

In the standard code, those 6-bit fields represent

respectively the characters SP, UC, O, LC, R, I, O, N; in

effect the computer word represents the English word Orion.

2.0

Page 7

30.9.1961

In particular, if this computer word is sent to a 7-track

paper-tape punch, and the punched tape is then printed via a

Flexowriter, the printing appears as O r i o n , the

first letter being preceded by one space.

In certain cases, notably when reading data from

punched cards, a computer word is regarded as consisting of

eight 6-bit fields, but these fields are not character-

representations as described above. Nevertheless it is

convenient and conventional to refer to such fields as

characters.

Radix-words, associated with the 100- and 101-

instructions, (see Section 3.10) are also regarded as being

formed of eight 6-bit fields, each of which is sometimes

termed a character. When it forms part of a radix-word, each

character is sub-divided into two smaller fields. The second

of these sub-fields, represented by the l.s. 4 bits of the

six, is used as a number (0 to 15) in the arithmetical

operations of the conversion process. The 2 m.s. bits which

constitute the other sub-field are used to control checking

(in the 100- instruction) or to determine the treatment of

non-significant zeros (101-instruction).

2.0.4 The word as a set of packed data

It is often necessary to store, and possibly operate

on, a number or some other item of data which can be

represented by comparatively few binary digits. Useful

economies in storage requirements can be achieved by packing

several items of this type into a single word: there are no

restrictions on the length of the fields or on the number of

fields within a word (subject, obviously, to the limit imposed

by the 48-bit word length).

If a field k bits long is used to hold a number, the

value of that number (regarded as an integer) lies within one

or other of the following ranges:-

a) if unsigned, 0 ≤ n ≤ 2k -1

or b) if signed, with the m.s. bit of the field used

as the sign bit, -2k-1 ≤ n ≤ 2k-l -l

Thus a 7-bit field can represent any unsigned integer

in the range 0 ≤ n ≤ 127 or any signed integer in the range –

64 ≤ n ≤ 63.

At the programmer's discretion, packed numbers can be

interpreted as integers (as above), as mixed numbers or as

fractions; in the two latter cases the precision is dictated

by the number of bits allocated to the fractional part. It is

expected that packed numbers will normally be regarded as

integers.

2.0

Page 8

30.9.1961

As stated in section 2.0.3 above, the symbolic input

routine recognises lines on the program sheet such as 0, 7,

47, 6, 50, 41, 47, 46 setting each of the successive fields to

the 6-bit representation of the written integers. In fact,

each character can be written in other forms. For example, to

set a 6-bit field to the binary equivalent of 47, any of the

following written forms may be used:

a) 47

b) 32 + 15 (or the sum or difference of any number of

integers, basic addresses and/or symbolic

addresses, provided that the result is of rank 0

and has the required numerical value, which must

be less than 64).

c) -17 (47 = 64-17, and 26 = 64: the l.s. 6 bits of

the binary representation of the (negative)

integer are stored).

The Symbolic Input Routine also accepts forms analogous

to the above, to permit setting

a) four 12-bit fields, typically 127,4095,-7,100+373

b) two 24-bit fields, typically 13955, A572.

Note that, in format (b) of these, either or both of

the packed quantities may be a working store address, a drum

address, or the name (geographical or programmer’s) of a

peripheral device.

If the word is to be divided into fields of different

lengths, the PACKED NUMBERS Directive (q.v.) of Symbolic Input

may be used.

Naturally, the data represented by a given field can be

non-numerical; the actual significance is assigned by the

programmer. The use of one bit to record the sex of a person

is an example of non-numerical packed data.

2.0.5 The word as a logical quantity

When a word is used as a logical quantity, interest

attaches principally to the actual configuration of 0-bits and

1-bits within the word. It is usually irrelevant to consider

the numerical value of the word, or the characters represented

by the 6-bit fields. (Cases do arise when it is convenient to

refer to and treat a number or a set of characters as though

it were a logical quantity, e.g. when using instruction 123,

or when using instruction 56 or 57 to copy two numbers by a

single instruction.)

2.0

Page 9

30.9.1961

In particular, the m.s. bit of a logical quantity is

not regarded as a sign bit, and does not receive the special

treatment normally accorded to the sign bit of a numerical

quantity (e.g. in the shift instructions).

One of the most common uses of a logical quantity is as

a 'mask' as an operand in one of the logical instructions.

The most direct way to set, on input, the content of a

word as a logical quantity is to use the MASK directive (q.v,)

of Symbolic Input. Using this directive a mask consisting of

ten 1-bits followed by twelve 0-bits followed by twenty-six 1

bits could be set on input by the following lines on the

program sheet.

MASK 1-10, 0-12, 1-26

NORMAL Such a word may be labelled if desired.

Other means by which a logical quantity may be set on

input are by writing it as:-

 i) a pseudo-instruction,

 ii) a number,

iii) a set of characters.

The contents of two consecutive registers may be

regarded as combined to form a double-length logical quantity.

The m.s. bits of the two words are not regarded as sign bits;

in particular, the m.s. bit of the l.s. word is not

necessarily zero, i.e. there is no "standard form" as there is

with double-length numerical quantities. The instructions 56,

57 and 123 are designed specifically for operations with these

double-length logical quantities.

2.1

Page 1

26.10.1962

2.1 The Working Store

2.1.1 The Working store, or core store, is a ferrite-core

matrix with a capacity of between 8192 and 32768 words. Its

cycle time is 12 microsecs, which determines the maximum

average rate of use of the store. It is made up of registers,

each holding one word of 48 bits. A 49th bit is attached to

each register to provide a parity-check; the parity of each

word is calculated and stored with the word in the store and

is automatically checked whenever the word is used as an

operand or whenever it is overwritten, unless this overwriting

is caused by a 143-instruction or a peripheral reading

transfer. The parity-bit is not accessible to instructions.

The registers making up the working store have machine

addresses which are the integers from 0 to M-1, where M is the

capacity of the store. The register with machine address 0

always contains zero; the other registers can be used to hold

any word. Information in the working store is volatile: it

disappears if the computer is switched off.

2.1.2 Each program (or, strictly, job) has its own part of

the working store, called its reserved region. This region is

made up of consecutively-numbered registers starting at a

register whose machine address is called the datum-point of

the job. This datum-point must be a multiple of 64 and is

allocated to the job by the Monitor Program immediately prior

to input. Within the reserved region the addresses of the

registers are denoted by A0, A1, A2, etc., which are called

basic addresses. The machine address of a register can be

found from its basic address by adding the datum-point to the

numerical part of the basic address. (The letter A which

introduces a basic address can be regarded as indicating that

the datum-point has to be added - it can also be thought of as

indicating an Address, since machine addresses are not

normally considered.) The actual register denoted by a

particular basic address will depend on the job (or program)

using it.

2.1.3 The registers with basic addresses A0, A1, ..., A63 are

called the accumulators of the job or program under

discussion. Registers which are not accumulators (but which

are within the reserved region) are sometimes called ordinary

registers. The accumulator A0 always contains zero, and this

register may not be written into (an attempt to do so is

treated as a reservation-violation). (A0 is in fact cleared

by the Monitor Program before the object program is entered.)

The other accumulators are often used as working space for the

job, the ordinary registers are normally used to hold program

(starting traditionally at A64) and data and for extended

working space - but these roles can be interchanged if

necessary because the only distinction between accumulators

and ordinary registers is that Z-addresses in instructions

cannot refer to ordinary registers. It is thus quite

legitimate to obey instructions from the accumulators.

2.1

Page 2

1.8.65

Orion 2. The information in this section refers in

general both to Orion 1 and Orion 2. Described here are the

differences to be noted when reading these sections for Orion

2.

Section, 2.1.1. Orion 2 has a minimum of 16 K core-store and

cycle time is 2 microseconds. Parity is checked with 143

instruction and peripheral transfers.

2.2

Page 1

26.10.1962

2.2 Instructions, general

2.2.1 An Orion instruction is made up of a number of parts,

the most important being its function (F) and three addresses

denoted by X, Y and Z respectively. In a written instruction

these four parts are written on one line of a program sheet,

on which four columns are ruled to correspond. The way in

which the instruction is written depends on which program-

input routine is to be used to read it in; we use here the

notation of Basic Input (see Sec. 7.1) in its simplest form,

which is also applicable to some other routines. The

instructions making up a program are eventually punched into

paper tape or cards according to conventions (punching rules)

appropriate to the input routine to be used. This input

routine can then be used to read in the instructions, convert

them to their internal form (machine-instructions) as needed

by the computer and store them. A machine-instruction

occupies one 48-bit word: an instruction word.

2.2.2 A simple instruction might be written as follows:

00 A100 A293 A18

In this instruction 00 is the function, which is written in a

simple numerical code, and the other three items are the X, Y

and Z addresses respectively. We write:

F=00, X=A100, Y=A293, Z=A18.

The effect of this instruction is to add the content of (i.e.

the number in) register A100 to the content of A293 and to

place the result in register A18. The original content of A18

is lost but the contents of A100 and A293 are unchanged. This

is in fact a straightforward 3-address instruction. We can

indicate symbolically the effect of this instruction by

writing

z’= x + y.

In this notation x, y and z represent respectively the

contents of X, Y and Z and the prime (in z’ on the left-hand

side) indicates a reference to the content after the

instruction has been obeyed. It is understood that

x’ = x and y’ = y

in a general 3-address 00-instruction (provided, of

course, that Z is not equal to X or Y).

2.2.3 In most instructions the X and Y addresses can refer to

any of the registers reserved for the program; they are called

the main addresses. The Z-address in an instruction, however,

must be one of the program's accumulators (i.e. the registers

whose basic addresses are A0 to A63). The datum-point of the

job is normally added to the X and Y addresses (if

appropriate) by the program-input routine at the time when the

program is read in, these two addresses are then machine

addresses; they occupy 15 bits

2.2

Page 2

26.10.1962

each in the 48-bit machine instruction. The Z-address is,

however, stored without its datum-point (which is added by

hardware when the instruction is obeyed) and occupies 6 bits

only.

2.2.4 The function is that part of an instruction which

indicates the kind of operation to be carried out; it is

represented by 7 bits in the machine-instruction. The first

four of these function-bits represent an integer between 0 and

15 which is the group to which the function belongs; the

least-significant three function-bits represent an integer

between 0 and 7: this is the position of the function within

the group. The group and position numbers are written next to

one another in the standard written form of the function. The

following are examples:

Written function Group-number Position number Function

bits

 02 0 2 0000 010

 57 5 7 0101 111

 95 9 5 1001 101

 124 12 4 1100 100

The function in a written instruction is thus a 2- or 3-digit

number in a mixed decimal-octal notation.

2.2.5 There are 16 groups of instructions in the instruction-

repertory, each containing up to eight instructions. These

groups are as follows: detailed descriptions of the

instructions will be found in Sec. 3.

 Group General Description of Functions

 0 y an operand) Addition, subtraction,

 1 Y an operand) copying and simple

 2 Pseudo-register operand) logical operations.

 3 Multiplication

 4 Division

 5 Shifts

 6,7,8 Jumps, discriminations or tests, counting

 9 Floating-point arithmetical operations

 10 Data-conversions

 11,12 Miscellaneous logical operations

 13 Spare

 14 Peripheral devices, blocks of registers

 15 Special operations involving the Monitor Program

The 48 bits in a machine-instruction are allocated in

the way described in Sec. 2.0.1.

2.2

Page 3

26.10.1962

2.2.6 We described above (Sec. 2.2.2) the action of the 3-

address 00-instruction:

00 A100 A293 A18

Most instructions also have a 2-address form. The following

is a written 2-address 00-instruction:

00 A100 A293

Its effect is to add the contents of A100 and A293 (exactly as

in the 3-address instruction); this result is then placed in

A100, in place of the first operand. The effect of a general

2-address 00-instruction may be described as:

x' = x+y.

It will be noticed that Z is not used in the above

instruction, which is described as being of "unmodified 2-

address type".

2.2.7 In a general (modified) 2-address instruction the Z-

address is used to specify a modifier which gets added into

the X- or Y-address, or both, before the instruction is

obeyed. The modifier-part of a word is simply its 24-bit

less-significant half; it is denoted by a suffix m so that the

modifier in A40, for example, is denoted by A40m and the

modifier in z is denoted by zm. In the instruction written

00Y A100 A371 A40

the modifier in A40 will be used to modify the Y-address A371

(because Y is written after the function). If, for example,

the content of A40 is the integer 13 at the time when the

above instruction is obeyed, then this instruction will have

the same effect as if it had been written

00 A100 A384

The modification process which increases the Y-address takes

place in the control circuits of the computer at the instant

when the instruction is obeyed; the stored instruction is not

itself changed by modification. To modify the X-address in a

2-address instruction we write X after the function instead of

Y. To modify both main addresses (by the same modifier) we

write XY.

Any of the accumulators A1 to A63 can be used directly

to hold modifiers for a program. If A0 is used we get an

unmodified instruction.

2.2

Page 4

26.10.1962

2.2.8 In the stored form of an instruction the two Type Bits
(TX and TY) are used to specify the main addresses which are
to be modified. If either, or both, of these bits is a 1 then
the corresponding main address is modified and the instruction
is of 2-address type. If both of these bits are zero then the
instruction is of 3-address type. Conversion from the written
form of an instruction to the internal machine-instruction is
done by the program-input routine used to read in the program.
Conventionally it is arranged that an instruction such as

00 A100 A384

(in which only two-addresses are written and neither X nor Y
is written after the function) is stored as if it had been
written

00X A100 A384 A0

The effect of the Type Bits can be summarized as
follows:

(a) Both type bits zero: 3-address type
(b) Either or both type bits one, Z=0: Unmodified 2-addr type
(c) Either or both type bits one, Z≠0: Modified 2-address type

2.2.9 The Replacement Bits (RX and RY) provide the
facility of indirect addressing. Either bit in a machine
instruction can be made 1 by writing the corresponding main
address in parentheses in the written instruction; otherwise
the replacement bits are 0. Thus the instruction written

00 (A527) A491 A61

will be stored with RX=1 and RY=O. The effect is to cause the
X-address to be replaced by the modifier part of the specified
register before the instruction is obeyed. If, for example,
the content of A527 is the address A5OO (i.e. the integer
whose value is 500 plus the datum-point) then the above
instruction will have the same effect as the instruction
written

00 A500 A491 A61

Replacement occurs, like modification, only in the control
circuits of the computer at the instant when the instruction
is obeyed; the stored instruction does not get altered.

2.2.10 Replacement can be used on either of the two main
addresses (but never on the Z-address) in any instruction of
whatever type. If an address is specified as being both
replaced and modified then the replacement occurs first and
the replaced address is then modified. For example, the
instruction

00Y A100 (A412) A55

would have the same effect as the instruction written

00 A100 A319

2.2

Page 5

26.10.1962

if A412 contained the address A300 and A55 contained 19 at the

time the instruction is obeyed.

2.2.11 In describing the effects of an instruction we use the

symbols X, Y, x, y, x', y'. These refer always to the

effective addresses (and their contents) - i.e. to the

addresses after any modification and replacement have been

carried out.

2.2.12 The modification and replacement facilities which have

just been described are capable of handling most of the

address-computations needed. More complicated processes can

be obtained, if necessary, by using the 116- and 117-

instructions described in Sec.3.11. If even these are

insufficient then addresses can be computed by using any

sequence of instructions and left in a register for use by

means of replacement.

2.2.13 It should be noted that replacement and modification

use the modifier-parts of registers, i.e. the 24-bit less-

significant halves. In a machine instruction the main

addresses occupy 15 bits each; these are extended to 24 bits

by adjoining 9 zeros at the m.s. end when the instruction is

obeyed. These 24-bit addresses are modified and replaced as

necessary. The effective addresses X and Y are thus 24 bits

long, in general. When such an address is used (as it

frequently is) to refer to a register, only the l.s. 15 bits

are employed - the m.s. 9 bits are then disregarded. The Y-

addresses in shift-instructions and in 102-, 103-, 120-, 121-,

124- and 141-instructions are specially treated (see Sections

3.5, 3.10, 3.12 and 3.14).

2.2.14 Most of the instructions in the repertory have both 2-

address and 3-address forms. The general rule for deriving

the 2-address form from the 3-address form is:

replace z' by x' (and z*' by x*'),

replace z by zero

in the defining equations (and relations) of the 3-address

form. There are, however, some instructions which do not

follow this rule -notably the jump instructions of group 8.

Some instructions use or alter adjacent registers to

those named. To describe these we use the notation

exemplified by the following:

(a) x* is the content of X+1,

(b) z*’ is the content of Z+1 after obeying the instruction

This notation is useful, for example, in describing

instructions with double-length operands, where x is the m.s.

half and x* the l.s. half of the operand. Such an operand is

often written as x: (see Sec. 2.0.2e). The notation used in

the Manual is summarized for reference in Sec. 0.4.

2.2

Page 6

26.10.1962

2.2.15 Signals are instructions which are marked in a

certain way with a view to possible monitoring action during

program-testing. They are written with a capital letter S

after the function (and modification letters X or Y). For

example:

01XS A1234 A9 A5

The corresponding machine-instruction has its signal-bit (see

Sec. 2.0.1) equal to zero. See Sec. 5.2.1 for a description

of events when a signal-instruction is encountered.

2.2.16 In the normal or "automatic" condition the instructions

in a program are obeyed sequentially from the registers of the

working store. The machine-address of the instruction

currently being obeyed is called the control number and is

sometimes denoted by c. This number gets 1 added to it during

the execution of an instruction and is then available to

select the next instruction. This regular sequential

selection of instructions may be interrupted by a successful

jump instruction, which sets c to a new value, or by an

interruption connected with monitoring or time-sharing, when

the current value of c is stored for possible later return.

The control number is displayed on the main control panel in

the lower half of J (see Sec. 2.4.4 and 2.4.5).

2.2.17 Various notations will be found in the descriptions (in
Sec. 3) of the effects of various instructions. For example,
an operand in X may be referred to as x, xI , xF , xG , xL or
as a word made up of 6-bit characters, and so on. These
notations are chosen so as to make the descriptions of the
instructions as simple as possible and to indicate their most
common or intended applications. They are not to be taken as
indicating any restrictions on the significances of the words
used with these instructions. These significances are the
concern of the programmer and not of the machine.

2.2.18 There is a single overflow-indicator, commonly referred
to as OVR, which is used to indicate whether capacity has been
exceeded in arithmetical operations. If, for example, the
words in A100 and A200 each have the value +0.75 on the
fractional convention (see 2.0.2b) then the instruction

00 A100 A200 A3

will attempt to produce +1.5, which is not representable on
the fractional convention. We say that capacity has been
exceeded or that overflow has occurred. If monitoring on
overflow is not turned on (see Sec. 5.2.3) then the overflow-
indicator will be set (whether or not it was set before) and a
result will be stored which is arithmetically wrong (the above
instruction will place -0.5 in A3 since 0-group instructions
always produce the in-range fraction congruent modulo 2 to the
correct result). If monitoring on overflow is turned on then
the overflow-indicator is unaltered, the instruction is not
completed (i.e. no result is written away) and the Monitor
Program is called in (see Sec. 5.2.3),whether or not the
overflow-indicator was previously set.

2.2

Page 7

21.11.1962

The attempted computation of a floating-point number

which exceeds capacity is called floating-point overflow (see

Section 3.9); this will also set the overflow-indicator unless

monitoring action is called for.

The state of the overflow-indicator can be found by

referring to pseudo-registers 4 to 7 (see Section 2.6).

2.2.19 Overflow can occur in any instruction whose function is

in this list:

00,01,02,03; 10,11,12; 20,21,22,23; 30,31,32,33,34;

40,41,42,43,44,45; 50,51,54,55; 80,81,82,83,87;

90,91,92,93,94,95; 100,101,102,103; 126.

In addition the special 150-instructions with Z = 23,30,34,52

or 53 (see Section 5.3) and the 152-instruction (not in

Programmers' Mode) may cause OVR to get set.

2.2.20 Floating-point overflow can occur in any instruction

whose function is:

90, 91, 92, 93, 94, 95 or 102.

2.2.21 The overflow-indicator may be cleared by instructions

having the following functions:

86, 102, 125, 126

or by any instruction referring to pseudo-registers 4 or 5

(the functions of such instructions may be: 20 to 27, 66, 67,

112). (The pre-150 instruction (see section 3.15) will also

clear OVR). These instructions are the only ones which clear

the overflow-indicator, which will otherwise remain set after

overflow has occurred.

2.2.22 Subject to the special rules governing the construction

of compound instructions, which are described in Section 0.3

(Glossary, under "compound instruction"), and the special 150-

instruction with Z=50, which is always followed by another

word (see Section 5.3.50), any sequence or combination of

legal instructions is permitted except an instruction which

overwrites the instruction which is to be obeyed next. The

need for tampering with stored instructions in this way is not

likely to arise in practice owing to the ample provisions for

modifying and replacing the addresses in obeyed instructions

(see Sections 2.2.7 to 2.2.13). In those rare cases when it

is necessary, e.g. when the function-part of an instruction

has to be computed, then at least one instruction (possibly a

dummy) must be obeyed between (a) the instruction which

creates the new instruction (and overwrites the old) and (b)

the new instruction itself. The following sequence is, for

example, permissible:

2.2

Page 8

21.11.1962

OVER) 04 NEW INSTR plant new instruction in NEW

 117 0 0 dummy instruction

NEW) 04 A1 A1 gets overwritten

Here the dummy instruction must not be left out or the old

form of the instruction in register NEW will be obeyed (unless

there happens to be an interruption after the instruction

labelled OVER is obeyed). A less obvious example is provided

by a counting instruction (with function 80 to 83) which

counts in and then jumps to another instruction but this kind

of programming trick is normally to be avoided on other

grounds. This restriction is necessary because the execution

phases of successive instructions are overlapped, the computer

extracting the next instruction from the working store before

the current instruction is completed. This overwriting of the

next instruction is, of course, permissible when it does not

matter whether the old or the new form of the instruction is

obeyed (for example, it is permissible to write into the Y-

address of an immediately following 3-address 86-instruction

or into a special 150-instruction, which is in any event

interpreted by the Monitor Program).

2.2

Page 9

10.5.1963

2.2.23 If an address is replaced then one of the earliest

processes, in obeying the instruction, is to check this

address for lock-outs and reservation violation. If this

address is locked out or does violate reservations then the

corresponding action will take place. For example, the

instruction

37 (AO-1) A100

will cause the program to be suspended because of reservation

violation and not because it is an illegal instruction.

2.2.24 In some instructions the defining equation (i.e. the

equation indicating the effect of the 3-address form of the

instruction) does not contain a reference to all three

addresses or their contents, e.g. the defining equation for

the 03- instruction is z'=y and no reference is made to X or

x. X, in this case, is a redundant address and when such an

instruction is obeyed X is not used. The redundant address is

not checked for lockouts and reservation violation unless

replaced. If it is replaced because of replacement (see

2.2.23) the address will be checked for lock-outs and

reservation violation but it will not be used, i.e. it is

still redundant.

In the following 3-address instructions the X-address

is redundant:- 03, 13, 04, 14, 23, 24, 93

In the following 3-address instructions the Y-address

is redundant: 86, 87

In the following 3-address instructions the Z-address

is redundant: 116, 117, 140, 141, 142

The X- and Y-addresses in some compound pairs of the

140, l42 and 142-instructions are redundant.

(i) For all devices

Mode 13 (Interrogate). The Y-address of the 142-

instruction is redundant.

(ii) For all devices except the drum, and magnetic tape

Mode 16 (Disengage). The X- and Y-addresses of the

142-instruction are redundant.

(iii) For Magnetic Tape

Mode 14 (Rewind). The X- and Y-addresses

of the 142-instruction are redundant.

(iv) Internal Transfer

The Y-address of the first 142-instruction is

redundant.

Destination addresses of unsuccessful jumps are not checked

for lockouts and reservation violation unless replaced, see

2.2.23.

2.2

Page 10

1.8.65

The information in this section refers in general both to

Orion 1 and Orion 2. Described here are the differences to be

noted when reading these subsections for Orion 2.

Section 2.2.16. Because the control panel is different on

Orion 2, the control number is displayed but not on Orion 2's

J register.

Section 2.2.22. Orion. 2 can overwrite instructions as there

is no overlap as there is on Orion 1

2.3

Page 1

26.10.1962

2.3 Modes of Operation

2.3.1 Most of this Reference Manual and the published

descriptions of Orion and its programming techniques are

concerned with the normal or Programmers’ Mode in which the

system operates. When an interruption occurs the Monitor

Staticisor (also known as HKFF) is turned on and the computer

is thrown into the Monitoring Mode, in which part of the

Monitor Program operates; the Monitor Program returns the

computer to Programmers' Mode by obeying a 152-instruction.

The Monitoring Mode can be thought of as a subsidiary mode of

the Programmers' Mode.

The following events occur in Monitoring Mode and not

in normal Programmers' Mode.

(a) Lockouts have no effect.

(b) There are no interruptions on the completion of
peripheral transfers.

(c) The timer is out of action.

(d) The reservation-checking system is inoperative, and the
datum-point register is cleared (to zero).

(e) Interruptions due to peripheral incidents are delayed, by
being stored in the appropriate peripheral control unit,
until return to Programmers' Mode.

(f) The instructions of group 15 (see Sec. 3.15) are valid.

(g) Program failures (e.g. illegal instructions or
impermissible operands) cause the instruction to be
repeated - they must therefore never be allowed to occur.

(h) The l40-instruction operates differently in that its Y-
address contains the machine address (k-bits) of the
peripheral device concerned and not the programmer's
name.

(i) The 141-instruction similarly specifies the machine-
address of the drum location referred to and not the
programmer's address (see Sec. 3.14).

2.3.2 There is a key-operated switch on the main control

panel of the computer which can be used to put the machine

into Engineering Mode. In this mode the computer behaves

exactly as in the Monitoring Mode described above but with the

following exceptions:

(a) Lockouts remain effective, but a locked-out instruction

does not cause an interruption - it is simply repeated,

over and over again (without being completed), until the

lockout is lifted.

(b) The 152-instruction does not return the computer to

Programmers' Mode.

2.3

Page 2

26.10.1962

(c) The 157-instruction, which causes the computer to wait

(see Sec. 3.15) must not be obeyed in a part of the store

which is subject to a lockout (this causes the

microprogram pulse to be lost). The same is true of the

153- and 156-instructions.

(d) A set of control keys becomes operative which allow the

computer to be stopped, to obey instructions set up on

the handkeys and to be operated in other ways necessary

for its proper maintenance (see Sec. 2.4.5).

The key to operate the switch may be inserted and withdrawn

only when the switch is turned to the Normal (Programmers'

Mode) position.

2.3.3 The same key-operated switch referred to in Sec. 2.3.2,

above, can also be used to put the computer into Engineers'

Time-Sharing Mode. The machine then behaves exactly as in

normal Programmers' Mode (or Monitoring Mode, since

interruptions are allowed) except that the engineers' control

keys described above are operative. This mode facilitates

maintenance of the time-sharing features of the system.

2.3

Page 3

1.8.65

The information in this Section refers in general to both

Orion 1 and Orion 2. Described here are the differences to

be noted when reading these sections for Orion 2.

Section 2.3.1.

Subsection (d) On Orion 2 the datum point is ignored not

cleared.

Section 2.3.2.

Subsection (c) On Orion 2 no pulse is lost and so these

instructions may be obeyed in these circumstances.

2.4

Page 1

26.10.1962

2.4 The Main Control Desk

2.4.1 The main control desk (sometimes called the console)

has a level surface, behind which is a nearly vertical panel

on which are the main controls and displays for the computer.

On the level surface are, on the operator’s left, the main TR5

paper-tape reader (*TRA) and, the operator’s right, the main

Flexowriter.

2.4.2 On the vertical panel of the main control desk are a

number of displays for the use of the maintenance engineers.

Most of the controls are also for the engineers’ use and are

in fact inoperative in the normal Programmers’ Mode (see Sec.

2.3.2). The only keys which are normally operative are the

Handkeys and the controls for the main tape-reader and

Flexowriter (see Secs. 2.4.8 and 2.4.9 below).

2.4.3 The Handkeys are a set of 48 single-acting switches

arranged in two rows of 24 and spaced and labelled to

correspond to the fields in a machine-instruction. The keys

are also numbered 0 to 47 to show their bit-positions. We

denote the keys thus: H0, H1, ..., H47. If the computer reads

from pseudo-register 18 (see Sec. 2.6) a word is obtained

which has 1-bits in those digital positions where the

corresponding handkeys are down and 0-bits elsewhere. Pseudo-

register 19 contains the inverse word (0-bits where the

handkeys are down). It is strongly recommended that programs

should not use the handkeys unless this is essential. These

keys are primarily intended for engineers’ use.

2.4.4 The displays take the form of lights, each

corresponding to a bit in a register; the light is on if the

bit is a one. These displays are useful only if the machine

is stopped or on "slow"; they are therefore of no use in

Programmers’ Mode. The principal displays are the following:

(a) The Route Map. This occupies the left-hand end of the
main control-panel; it is primarily of concern to
engineers but includes a few lights of use to
programmers, notably a red light which is on when the
overflow-indicator is set, a row of 9 lights giving the
datum-point and a row of lights showing the settings of
the monitor indicators (to show, e.g. whether monitoring
on signals is turned on, etc.)

(b) In the centre at the top of the control panel is a set of
48 lights, arranged in two rows of 24, which show the
content of G or H (according to the position of a switch
to the right of the display). The registers G and H are
in the arithmetical unit.

(c) Below the G/H display are two rows of lights showing the
contents of further registers in the arithmetic unit,
viz. M and K on the left and J on the right (the upper
half holding the “write address” and the lower half the
control number).

2.4

Page 2

26.10.1962

(d) Below this are lights displaying the S, F, R and T bits

in the current instruction. (Below these lights are the

handkeys.)

(e) At the top towards the right of the control panel is a

set of lights displaying the content of L, another

register of the arithmetical unit.

The M and K registers are used to hold the mode and k bits,

respectively, in the initiation of peripheral transfers (the k

bits are the machine address of the peripheral device to be used).

These registers are, however, also used for other purposes, in

particular K is used to manipulate the shift-number in group 5

instructions and both M and K are used in floating-point

instructions (for exponent arithmetic) and in the count

instructions (80 to 83). The L register is used in multiplication

and division and other instructions with double-length operands.

2.4.5 In Engineering Mode certain controls become operative

which are important to those writing certain basic programs.

They will therefore be described here. The chief controls are

three double-acting keys. Each of these has three positions;

up, central and down. The keys are the following:

(a) left-hand key: Up (“insert”) - for storing the handkeys,

Central (“automatic”) - for obeying stored

instructions.

Down (“manual”) - for obeying the handkeys.

(b) centre key: Up (“jump to 128”) - sets control number to 128,

Central - normal (key is spring-loaded),

Down (“single step”) - to obey one instruction.

(c) right-hand key: Up (“slow”) - to obey instructions at reduced rate

Central (“stop”) - to stop the computer,

Down (“run”) - to obey instructions normally.

These keys are mounted centrally near the bottom of the

control panel, slightly towards its right-hand side.

Certain combinations of settings of these keys are

prevented from having any effect by electronic interlocks

(e.g. “single-step” and “run”). In general, one should not

move the left or centre keys unless the computer is stopped

(i.e. with the right-hand key in its central position). In the

following description we suppose that all three keys are

initially in their central positions - this will be called the

Basic Position.

The control number is displayed in the lower half of J

(see 2.4.4c above). Starting from the Basic Position, if the

right-hand key is depressed (to “run”) the computer will obey

instructions from the working store, starting at the address

displayed. Returning this key to its central position

(“stop”) at any time will cause the machine to stop as soon as

it has completed the instruction (or compound instruction -

see the Glossary, Sec. 0.3) it was obeying at that instant.

2.4

Page 3

26.10.1962

Pushing the centre key up (“jump to 128”) while the

computer is stopped will set both halves of J to 128, i.e. it

will set both the control number and the write address to 128.

This key springs back to its central position when released.

If this key is pressed down (“single step”) from the Basic

Position, then the computer will obey a single instruction (or

compound instruction) from the working store at the address

equal to the control number; the control number will also be

altered to the address of the next instruction (normally by

having one added to it but it will be increased by more if a

compound instruction is obeyed and will be set to a new value

by a successful jump). In the case of most of the

instructions the result written into the store will at this

point be held in register H and can be displayed on the top-

most set of lights (see Sec. 2.4.4b above). The write

address, displayed in the upper half of J, shows where this

result was written. The S, F, R and T bits of the next

instruction are also displayed at this moment (see Sec.

2.4.4d) and the whole instruction is in register G, which can

be displayed instead of H if desired.

Pushing the right-hand key up (to “slow”) has the same

effect as a series of single step operations following one

another at a rate which can be altered by an adjacent knob. A

program can be obeyed slowly by using this feature (but 157-

instructions will not then cause a stop). It is very

important not to try to go too fast when on “slow” as a long

instruction (e.g. 142 pair) might then go wrong.

If, starting from the Basic Position, the left-hand key

is pushed down (to “manual”) then the computer is ready to

obey machine instructions set up on the handkeys - these are

called manual instructions. Such instructions are normally

obeyed one at a time by using single step operations but they

can, exceptionally, be obeyed on “slow” or “run”. The control

number will not be changed by obeying manual instructions

(other than successful jumps) so that it is possible to stop a

program, obey a manual instruction and then continue with the

program. It is not possible to obey compound instructions

manually.

Manual instructions may be used to display the content

of any working store register. For example, to display the

word in the register with machine-address 33 we stop the

computer, set up the machine instruction

04X 0 33

go to “manual” and do a single step operation. The word

required is then in H and can be displayed on the upper set of

lights.

2.4

Page 4

26.10.1962

If one starts from the Basic Position and pushes up the

left hand-key (to “insert”) then the computer is ready to

insert (i.e. store) the word set up on the handkeys into the

working store register whose machine address is in the upper

half of J (the write address): it will actually insert the

word when a “single step” is given; the write address is

increased by one immediately afterwards so that another

instruction can be set up and inserted into the next register.

In this way one can easily insert short sequences of

instructions into the working store; this is the foundation of

the “bootstrap procedure” (see Sec. 2.4.6 below). It will be

recalled that pushing up the centre key (“jump to 128”) sets

the write address to 128, as well as the control number. (The

“insert” process also operates on “slow”, which is always

equivalent to a succession of single steps.)

To insert words from the handkeys into an address other

than 128 it is necessary to be able to set the write address

to an arbitrary value. This can be done by obeying a 2-

address 74-instruction, which has the effect of setting the

write-address equal to the address set up in X on the

handkeys. If this is preceded by a manual 2-address 75-

instruction to the same address then both halves of J will be

set to this address. (Note that the 75 must precede the 74

since a successful jump interchanges the two halves of J.)

2.4.6 The ‘bootstrap’ procedure is used in Engineering Mode

to get programs into the computer without using the built-in

programs. This is necessary during commissioning and

maintenance. The procedure is usually preceded by a manual

143-instruction to clear the working store.

A program to be read in by the bootstrap procedure must

be punched in binary as machine instructions; the paper tape

(7-track) or cards will therefore have been prepared earlier

by computer. The following description assumes that the

program is punched in 7-track paper tape. The basis of the

procedure is that a single compound instruction of the form

140.2 0 K

142 W N

can read the whole program into the working store - it will in

fact read in N characters from peripheral device K and place

them in the store starting at machine address W. The

peripheral device is normally the main tape reader but the

values to be used for W and N will depend on the program being

read in. In order to avoid having to use a different

procedure for each program a standard procedure is used which

reads in a single 142-instruction (containing the variable

data) which is punched at the beginning of the program.

2.4

Page 5

26.10.1962

This standard procedure is to insert into 128 and 129

the instructions

140.2 0 K (In 128)

142 129 8 (In 129)

which are then obeyed. These read 8 characters (i.e. a word)

from peripheral device K (the main tape-reader) into 129, i.e.

over the 142-instruction above. These 8 characters represent

the new 142 appropriate to the program being read in. We now

have in 128 and 129 the compound instruction needed to read in

the program, and this is obeyed.

The standard bootstrap procedure is therefore as

follows:

(1) Go to Basic Position (all three keys central).

(2) Load tape in main tape reader with the first

non-UC character in the reading position.

(3) Left and centre keys both up (i.e. “insert” and

“jump to 128”); centre key springs back.

(4) Set up on the handkeys the instructions

140.2 0 K

(5) Centre key down (“single step”).

(6) Set up on the handkeys the instruction:

142 129 8

(7) Centre key down (“single step”).

(8) Left key central (“automatic”).

(9) Centre key up, then down (“jump to 128” and

“single step”).

(10) Repeat step 9.

Notes on this procedure (H12 means handkey no. 12):

Step 3: the write address is set to 128.

Step 4: the mode is in the m.S. five bits of X so

H12 should be down.

Step 5: the key will spring back when it is

released; this operation causes the 140-

instruction to be inserted in 128.

Step 7: the 142 is inserted into 129.

Step 8: prepare to obey stored instructions.

Step 9: set jump address to 128 and obey the

compound instruction to read new 142 from

tape into register 129. Tape in reader

moves.

Step 10: obey new form of compound instruction in

128 and 129 to read in the program.

2.4

Page 6

26.10.1962

Many of the programs which are read in by means of this
procedure are arranged to start in 128 and can therefore be
entered by “jump to 128” and “run” on the centre and right-
hand keys, respectively. A program which has to be entered at
some other machine address can be entered by obeying a manual
75-instruction.

2.4.7 If the computer encounters a 157-instruction in
Engineering Mode it will stop, displaying its effective
addresses. The computer can be caused to continue at the next
instruction by moving the right-hand key to its central
position (“stop”) followed by either “run” (right-hand key
down) or “single step” (centre key down).

2.4.8 Near the bottom of the main control panel, slightly to
the left of centre is a group of controls and displays for the
main tape-reader and Flexowriter. There is a row of small
rectangular lights for each device; some of these lights serve
also as push-buttons. As a general rule a button may be
pressed if it is lit up in white. The upper row are the
controls for the main Flexowriter and consists of four lights
as follows (from left to right):-

(a) “Input Selected”. This light is normally white; it turns
blue when the computer is reading from the Flexowriter
keyboard; the white light on the Flexowriter is then also
lit. If pressed it calls in the Monitor Program to read
from the Flexowriter.

(b) “Output Selected”. This white light turns blue when the
computer is typing (and possibly punching) on the
Flexowriter.

If this light is pressed it causes run out (repeated
punching of UC) provided the Flexowriter is disengaged.

(c) “Engage”. When white this may be pressed to engage the
Flexowriter; it then turns green.

(d) “Disengage”. This is red if the Flexowriter is
disengaged. It is otherwise white, when pressing it will
disengage the Flexowriter (e.g. to allow the stationery
to be changed).

A “Select” control is also mounted on the Flexowriter itself.
This is marked “Accept”.

2.4.9 The lower row of lights are the displays and controls
for the main tape-reader. These consist of four lights as
follows (from left to right):-

(a) 7-track/5-track. This control is divided into two
halves. The upper half displays “7-track” in yellow when
the “associated electronics” of the tape-reader are set
for 7-track tape. When set for 5- track tape the lower
half of the light displays “5-track” in blue. Pressing
this light switches the associated electronics from one
state to the other (the tape reader itself has to be
mechanically adjusted as well).

2.4

Page 7

26.10.1962

(b) “Select”. This white light is pressed to call in the

Monitor Program to read the heading of a tape (see Sec.

5.7). This light turns blue when the reader is

selected, i.e. is actually being used by the computer.

(c) “Engage”. This button is green when the tape-reader is

engaged. When white it may be pressed to engage the

reader.

(d) “Disengage”. This is red when the tape-reader is

disengaged. When white it may be pressed to disengage

the reader (for example to change tapes).

The “Disengage” button may be used if a knot of tape is

approaching the reader; the “Engage” button can then be

pressed to allow reading to continue.

2.4

Page 8

1.8.65

The detail in this section refers only to Orion 1. The

control panel for Orion 2 and the actual operation of the

machine from the panel (in Engineers Mode) is different. The

naming of the control registers for Orion 2 is not the same as

Orion 1, so that Orion 2 J's register is not the same as Orion

1's.

The sections that do apply to Orion 2 are 2.4.1., 2.4.2 and,

2.4.8. except for the position of the lights.

2.6

Page 1

2.2.1962

Pseudo-Registers

2.6.0 The pseudo-registers are a number of auxiliary

registers containing useful constants or the state of switches

inside or outside the machine. They can be read from but it

is not possible to write to them. They are referred to by the

instructions 20-27, 66, 67 and 112 (see sections 3.2, 3.6 and

3.11) - these instructions take the same time as the

corresponding instructions (00-07, 60, 61 and 110) for

ordinary registers. Pseudo-registers are available to all

programs impartially - they are not subject to lockout or

reservation checking. The Yth pseudo-register is referred to as

PY, and its contents as pY.

2.6.1 Contents of Pseudo-registers

The contents of even-numbered pseudo-registers from.P0

to P18 are given below; for odd number registers p(2n+1) =

¬p(2n), i.e. the contents of each odd numbered pseudo-register

is the inverse of the contents of the preceding even numbered

register.

p0 = 0

p2 = Local civil time - see section 2.6.3 for details

of the code.

p4 = Zero if overflow clear, all ones if overflow set.

Any instruction referring to p4 or p5 clears

overflow.

p6 is as p4 except it is not cleared when used.

p8 = upper half word mask - i.e. 24 ones followed by 24

zeros.

pl0 = -1.0 i.e. one followed by 47 zeros.

pl2 = ½, i.e. a zero, a one followed by 46 zeros.

pl4 = Mask for X address, i.e. 9 zeros, 15 ones, 24

zeros.

pl6 = Mask for Z address, i.e. 26 zeros, 6 ones, 16

zeros.

pl8 = Handswitches. The handswitches are a set of 48

keys which are provided for the use of the

engineers; their use by programmers is not

recommended except in very special circumstances

- e.g. Pegasus simulator. It is the operator’s

responsibility to ensure that only one program

using the handswitches is in the machine at once.

2.6

Page 2

15.8.1962

2.6.2 Unallocated Pseudo-Registers

At present pseudo-registers 20-31 inclusive contain

zero for even numbers and all ones for odd numbers. Pseudo-

register numbers above 31 are taken modulo 32, i.e. only the

least significant five bits are decoded. Programmers are

strongly recommended not to use either of these facts as they

may be changed if it is decided to add further pseudo-

registers to the machine.

2.6.3 Local Civil Time

The digital clock in Orion is a 24-hour clock in hours,

minutes and seconds. It is stored in a one out of n code,

i.e. in each field which has n possible values one and only

one of n bits is a 1. In each case the m.s. bit of the field

represents 0, the next 1, the next 2 and so on. The fields

are as follows:

D0 to D2 tens of hours

D3 to D12 hours

D13 to D18 tens of minutes

D19 to D28 minutes

D29 to D34 tens of seconds

D35 to D44 seconds

D45 to D47 not used (always zero)

e.g. the time 17.08.23 is represented by 1-bits in digits:

1, 10, 13, 27, 31, 38

and 0-bits elsewhere.

2.6

Page 3

2.2.1962

Third Character Fourth Character
(Twelves of Hours) (Hours)

Value Binary Decimal Value Binary Decimal
 Code Code Code Code
0 000000 0 0 000000 0
1 000001 1 1 000001 1
 2 000011 3
 3 000010 2
 4 000110 6
 5 000111 7
 6 001111 15
 7 001110 14
 8 001010 10
 9 001011 11
 10 001001 9
 11 001000 8
 0 001000 8
 1 001001 9
 2 001011 11
 3 001010 10
 4 001110 14
 5 001111 15
 6 000111 7
 7 000110 6
 8 000010 2
 9 000011 3
 10 000001 1
 11 000000 0

Fifth Character Sixth Character
(Tens of Minutes) (Minutes)
Seventh Character Eighth Character
(Tens of Seconds) (Seconds)

Value Binary Decimal Value Binary Decimal
 Code Code Code Code
0 000000 0 0 000000 0
1 000001 1 1 000001 1
2 000011 3 2 000011 3
3 000111 7 3 000111 7
4 000101 5 4 000101 5
5 000100 4 5 001101 13
0 000100 4 6 001111 15
1 000101 5 7 001011 11
2 000111 7 8 001001 9
3 000011 3 9 001000 8
4 000001 1 0 001000 8
5 000000 0 1 001001 9
 2 001011 11
 3 001111 15
 4 001101 13
 5 000101 5
 6 000111 7
 7 000011 3
 8 000001 1
 9 000000 0

