
11

Page 1

28.2.66

11.0 Hints that may be useful to Programmers

This section is a write-up of observations made by users. In no

way is this section an official document of how “things” ought to

be done, and users follow these hints at their own risk.

11.1 Documentation of Programs

All programs should be comprehensively documented i.e. the comment

facility should be used. Every effort should be made to keep the

documentation of a program up to date.

11.2 Program Storage media

Programs must initially be prepared on paper tape or cards and

usually the "character version” which may contain comments is

punched. It may be advisable in some cases (e.g. a long program)

to transcribe this “character version” to magnetic tape using the

utility routine, COPYDOC or EDITOR during this run a line printer

copy can also be obtained. Note that both Basic and Symbolic will

read "character versions” from magnetic tape. Advantages of

storing the “character version” on magnetic tape are that magnetic

tape affords the best safeguard against errors since it is less

likely to be maltreated, thus reducing peripheral failures on

reading, less likely to be mislaid,, faster input etc. Thus the

paper tape or cards are read once only and magnetic tape read

several times either to run the program (e.g. a Basic program or a

Symbolic load-and-go program) or to compile (a Symbolic program to

Basic program) or to re-edit the program (a Basic program or a

Symbolic program) using EDITOR, or to binary-and-map (i.e. map)

the program (a Basic program) using MAPPER etc.

11

Page 2

28.2.66

11.3 Information about Basic Input Routine which may be helpful in

speeding up input of an object program.

Basic uses some of the core allocated to it and drum for working

space. Basic needs at least l008 words of core and reserves more

drum as it needs it. If Basic is given more core than the minimum

then less drum may be used which will result in fewer drum

transfers. There will be, however, for an object program an

optimum amount of core which will result in a significant increase

in input speed; this is about 2000 words for “average” lengthed

programs. Reducing drum transfers usually results in faster

input.

Basic uses core in the following way:-

1) Basic’s program area for its chapters is 800 words - this

cannot be increased.

2) The L identifiers (the L’s) are stored in blocks of 64 words

(one word per L). When access to an L is required, the

whole block has to be in the core. By giving Basic more

core more blocks of L’s can be kept in the core rather than

on the drum.

3) There is always in the core an index of the blocks of L’s

being used; this is one word per block used.

4) There is one word par forward reference outstanding at any

one point in time. By giving Basic more core more of these

can be held in the core rather then on the drum.

5) The directives which are implemented later (e.g. NEW at

ENTER time) have to be stored. By giving Basic more core

these can be kept in the core instead of on the drum. Fewer

than 64 MONITOR directives cause 64 words to be used.

6) The main purpose of Basic is to store object program on the

drum. The object Program’s s storable words are assembled in

the core and written to the drum in convenient sized chunks.

The more core Basic is given the larger the chunks (up to a

certain point), and so there will be fewer drum transfers

involved.

If a program wants to be entered with fewer than 2000 words of

core then instead of the job-tape

JOB RUN 100

READ MY/PROG/-

have the job-tape

JOB RUN 2000

RES *CORE 100

READ MY/PROG/-

Since the RES CORE directive is reducing reservations, it is

remembered until enter time and there will be no change of datum

point.

Note that if a Reserve core directive which increases core

reservations is read then Basic makes use of the extra core but

note that the datum point may be changed and so increasing core

reservations directive should appear before any storable words.

11

Page 3

28.2.66

11.4. Example of how some users develop a Basic Program

This is to use the technique of “patching”. This obviates the

need to re-edit the program each time a correction is made since

the correction is inserted at “run time” from the job tape.

N.B. This technique should be used with care!

The program when originally written is organised as follows:-

(i) The programmer has to allocate extra drum and core space

(the patch area).

(ii) It probably is advisable to divide the program into two

sections. One is the job-tape which will contain amongst

other things the directives for reserving core, peripherals,

drum etc. and will terminate with the ENTER directive to

enter the program (using this patching technique the ENTER

directive on the program section will have to be replace by

END directive). The second section is the “storable word”

part of the program and will be a document with the name for

example

 MY/PROG/CHAR/VERSION/MK6/XYZ/1.2.66

and will be terminated by END directive (the job tape will

ask for this document to be read by a USE directive).

An example to explain "patching” follows:-

The character version will be organised thus

MY/PROG/CHAR/VERSION/MK6/XYZ/1.2.66

 V1 = 0

 V2 = A100

 150 L5 L6 50

 00S L7 L8 0

L7))L5)

 L8) 14 A1 0 | Start

L13))L14) 04 L20 L21

L15))L16) 14 L22 L23

L17))L18) 12 L24 L25

L100))L101) V0 = V2+40 |Patch area 40 words long

 L6 = V2-L1 |Length of program

 |including patch area.

 END |Not ENTER 0 which will

 |appear in job-tape

11

Page 4

28.2.66

Examples of corrections to be made

(a) An Alteration e.g. that the word in drum address L13 (at L14 when in

the core) is to be altered to

44 L20 L21

(b) A Deletion e.g. that the word in drum address L15 (at L16 when in the

core) is to be effectively deleted by inserting a dummy instruction.

(c) An effective Insertion of several lines e.g. after the word in drum

address L17 (at L18 in the core) - these lines being

34 L26 L27

60 V2+2 A3

30 L28 L29

15 L30 L31

The job-tape to insert those corrections and run the program would be:-

JOB CANDR

RES *DRUM

RES *CORE

RES *Peripherals

USE MY/PROG/CHAR/VERSION/-

| Separator

V1 = L13 | Correction (a)

 44 L20 L21 |

V1 = L15 | Correction (b)

 74 0 0 | Dummy instruction which

 | never jumps

V1 = L17

 75 L101 0 | Put instruction when obeyed

 | jumps to patch.

V1 = L100 | Store instructions in patch

 | area.

V2 = L101

 12 L24 L25 | Repeat the overwritten

 34 L26 L27 |)

 60 V2+2 A3 |) Insertions

 30 L28 L29 |)

 15 L30 L31 |)

 75 L18+1 0 | When obeyed jumps back

 ENTER 0 | Causes entry to program

Notes:

Correction (a). When the storable word

 44 L20 L21

comes to be stored in drum address L13 there should not be any outstanding

forward references to be filled in for this word if they are filled in

before ENTER is read.

Correction (b). This type of correction will work in certain cases. If a

string of instructions (compound string) is being corrected, then it would

be advisable to insert the dummy instruction

 117 0 0

instead.

 11

Page 5

28.2.66

The program and job-tape will not be left in this form once the corrections

work. It is then advisable to re-edit the character version using EDITOR

obtaining a new line printer copy, and to punch a new job-tape. This will

leave a clean patch area for further corrections .

Some users map the program even for development. The purpose of mapping a

program is to speed up its input. Assuming that during development the

program is read in several times, the time saved in reading will make up

for the time taken to map the program in the first place. The mapping run

of the program section will ask for the L identifiers etc. to be appended

so that when the mapped version is read in, it is as though the character

version had been read in, and so the above patching technique can be used.

Note that the use of some Basic facilities (e.g. optional settings) are

lost when mapped. All Basic programs produced by Symbolic can be mapped

correctly.

For details of MAPPER see the Orion Library Specification. An example job

tape for mapping the program section is:-

JOB MAP

RES *MT1 MY/PROG/CHAR/VERSION/-

SCR *MT10 1.6.67 MY/PROG/BIMAP.VN/WITH.LS/MK6/XYZ/1.2.66

L4 = 1

READ ORION/SYSTEM/MAPPER/-

Note that MAPPER inserts a RESERVE *DRUM directive (and a setting of V1) in

the mapped part of the mapped version, and so if the object program

requires more drum (than just for the storage of the object program

itself), say for space to hold intermediate results then the RESERVE DRUM

directive must appear after the USE directive in the “patching” and run job

tape example already given. The document request name with the USE

directive will be that of the mapped version.

Once a program is fully developed(!) and re-edited, a new mapped version

without the L identifiers .perhaps would be used since this version would

be shorter and use lass drum during input.

11

Page 6

 1/3/66

11.5 Information about Symbolic Compiler which may be helpful in Speeding

up Compilation

There are two phases of compilation

Reading in

Wind up

(i) Reading in

During this phase each line is checked for errors and is

compiled if possible into Basic, storing this on either tape or

drum. Lists are made of the Symbolic identifiers read and

their settings. A Basic identifier for each Symbolic

identifier is generated and a list of these kept. Other lists

of directives, lists for library subroutines to assemble ate.

are also made.

(ii) Wind up

During the first half of this phase the job will have no

active peripherals because Symbolic works on the lists. Checks

are made that all identifiers have been set; unset or reset

ones being put into appropriate lists.

The second half of this phase includes, if report level 2

has bean specified, outputting the symbolic identifiers . As

reporting and compilation are carried out together reporting

does not slow up the job too much. This second half also

consists of outputting the compiled program, normally this is

magnetic tape (or handing over to Basic if load and go). Note

that if a punch is used for Report Level 2 or for the compiled

program then the job may become punch limited.

Core-store and Drum Requirements

Symbolic needs at least 2544 words of core (see 7.2.C.2). Some

of this is for working space, symbolic uses drum for working space

and reserves more as it needs it. Symbolic has to store the Basic

character version of the compiled program somewhere and the answer to

this question (see 7.2.R.1.1) tells Symbolic whether this is to be

tape or drum.

Lists have to made of (among other things) the Symbolic

identifiers mentioned, their setting, their corresponding Basic

identifiers, lists of directives, assembly lists (e.g. which library

subroutines to get) etc. Larger core area will eliminate some of the

drum references for searching these lists and so decrease the elapsed

time but of course mill time used will be the same. The Symbolic

identifiers are stored five characters to a word (routine name

prefixes are not stored with each identifier and do not count towards

the five) and so some saving in space and searching time can be

achieved by using identifiers not more than five characters long.

11.6 Examples of How Some Users Develop a

 Basic Program produced by Symbolic Compiler

Since Symbolic produces a program in Basic Input language, the

patching technique already described (in 11.4) can be used. This

means that corrections to the program can be inserted at run time ,

thus saving time during development since recompilation will not be

necessary each tine an error is found.

The Symbolic program will be thought of as being in two parts;

firstly the job tape information containing the directives for

reserving core, drum and peripherals and secondly the document

containing only storable word information. The latter will be

organised in the following way:

11

Page 7

 1/3/66

 (i) will be terminated by END directive (see 7.2.C.2.9) and not by

ENTER directive which will appear on the run job tape.

 (ii) will have a patch area, the first word of the patch area will

be identified with both a core and a drum label. Each chapter

may have its own patch area.

(iii) will identify the first storable word of each chapter with both

a core and a drum 1abel. It is assumed that each chapter will

have only one TRANSFER directive of the TRA A100 type.

For example:

DOCU MY/PROG/SYMBOLIC/CHAR/VERSION

TRA A100

DRUM START)) C RESTART) +3

 START 0

 BUZZ) 04 JOE A6

 JOE = A13

PATCHDRUM))PATCHCORE) TRA +40+ | Patch area 40 words long

 END | Not ENTER

This document originally on paper tape, will probably be copied onto

magnetic tape from which a Basic character version will be obtained also on

magnetic tape. The Compiling run to produce this Basic character version

will have asked for “Report level 2” (see 7.2.C.2.6 and 7.2.R.2.2)

information giving a list of the Symbolic identifiers and their equivalent

Basic identifiers (there is no need to have a printout of the Basic

character version). The Compiling run thus gives a document, e.g.

DOCUMENT MY/PROG/BASIC/CHAR/VERSION

The “Report level 2” will give, for example

L1026 DRUMSTART

L1315 CORESTART

L335 BUZZ

L2167 PATCHDRUM

L2025 PATCHCORE

L5172 JOE

CORRECTIONS

Assuming that the line “labelled” BUZZ (core label) is to be altered,

deleted or lines inserted, then it is necessary to give the drum address of

this BUZZ line (i.e. where BUZZ is stored in the drum). This is (if only

one TRA A100 type in the chapter in which BUZZ occurs)

Drum starting address + (current core address - core starting

address)

DRUMSTART+BUZZ-CORESTART

but of course, on the “correct and run” job tape the equivalent Basic

11

Page 8

1/3/66

identifiers have to be given - these are found from the Report level 2

list. The required value of V1 (drum transfer address) is

 V1 = L1026+L335-L1315

and specifies BUZZ line on the drum.

Alteration

The BUZZ line is to be altered to effectively be

 04 JOE+1 A6

then the Basic equivalent of this is

 04 L5172+1 A6 |JOE ≡ L5172

Thus on the "correct-and-run" job tape would appear the lines

 V1 = L1026+L335-L1315

 04 L5172+1 A6

which results in the required alteration on the drum.

Deletion

See the Basic write up i.e. the instruction in some cases would be

replaced by

 74 0 0

Insertion

For example if the following lines are to be effectively inserted

after the BUZZ line

 04 JOE+5 A20

 60 +2+ A3

 10 A1 0

 11 A2 5

then one would need on the job tape

 V1 = L1026+L335-L1315

 75 L2025 0 |75 PATCHCORE 0

 |in place of BUZZ line

followed by the instructions to be in the patch area

 V1 = L2157 |V1 = PATCHDRUM

 V2 = L2025 |V2 = PATCHCORE

 04 L5172 A6 |repeat BUZZ line

 04 L5172+5 A20 |)

 60 V2+2 A3 |)

 10 A1 0 |) insertions

 11 A2 5 |)

 75 L335+1 0 |Jump back.

ENTER 0 |To transfer the chapter including its

 |patch area, which contains START 0

 |from drum to core and enter the Program

Note that there is the facility of specifying the Basic identifiers L0 to

L255 in a Symbolic program (see 7.2.G.2.3) and so one could have for

example

 TRA A100

*L1))*L2) +3

 START 0

 BUZZ) 04 JOE A6

 JOE = A13

*L3))*L4) TRA +40+

 END

11

Page 9

1/3/66

so that the Report level 2 reporting is given for BUZZ and JOE only

and thus

V1 = L1+L535-L2

would give the drum position of the BUZZ line etc.

i.e. L1 replaces L1026 (DRUMSTART)

L2 replaces L1315 (CORESTART)

L3 replaces L2167 (PATCHDRUM)

L4 replaces L2025 (PATCHCORE)

A job tape to insert corrections in the patch area and run the

program would be

JOB RUNCOR

RES *DRUM

RES *CORE

RES PERIPHERALS

USE MY/PROG/BASIC/CHAR/VERSION/-

| Separator

V1 = L1+L355-L2

75 L4 0

V1 = L3

V2 = L4

04 L5172 A6

04 L5172+5 A20

60 V2+2 A3

10 A1 0

11 A2 5

75 L335+1 0

ENTER 0

END

Mapping a Program

A Basic program produced by Symbolic Compiler can be mapped

and in some cases it may be worthwhile mapping the program even for

development.

11

Page 10

 1/3/66

11.7 Efficiency of Programs written by a User in Basic Input Language

and run on Orion 1

The remarks that follow are observations made by a user and may

apply in his case only. Once a program has been written it is worth

while reviewing it to ensure reasonable running times (by perhaps

giving the program more core store?). The programmer worked out

whether the job would be peripheral limited or mill limited (i.e.

allowing for other jobs in the machine it was possible to calculate

roughly from Flexowriter output percentage mill time/elapsed time).

He mentions that he learnt much from watching the peripherals when

the program was running. In some cases he expected the peripherals

to move at full speed, and in those cases where not expected to move

at full speed he expected them to move smoothly or not unnecessarily

jerkily. For example he expected an updating program on a low

activity file (10% say) to keep the tapes moving at 2/3 full speed

with 2 controls (at ½ full speed with 1 control). He expected an off

line job (a peripherals limited job) to keep the slow devices moving

quickly. When much mill was used and the peripherals were moving

slowly he ran tests to find out to where this mill time was

“disappearing”. He decided that there was something wrong with a top

priority job when the mill time used was significantly less than

elapsed time and the peripherals were moving evenly but more slowly

than expected. In this case he concluded that the job was held up

because of lockouts (he used double or multiple buffering to prevent

this), or perhaps because monitoring other than Style 0 was switched

on, or perhaps 150 instructions, mainly chapter changing

instructions, were unnecessarily obeyed (perhaps in an inner loop).

If a program ran intermittently (and it was the only program: in the

machine) he wondered if branching the program would be worth while.

In the case of mill limited jobs he attempted to detect which part of

the program was slow by timing sections of the program and in

particular, he examined general purpose routines (especially much

used input and output routines) which may have caused all his

programs to run more slowly than expected.

